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Relation among various expressions of the complex admittance for quantum systems in contact with heat
reservoir is studied. Exact expressions of the complex admittance are derived in various types of formulations
of equations of motion under contact with heat reservoir. Namely, the complex admittance is studied in the
relaxation method and the external-field method. In the former method, the admittance is calculated using the
Kubo formula for quantum systems in contact with heat reservoir in no external driving fields, while in the
latter method the admittance is directly calculated from equations of motion with external driving terms. In
each method, two types of equation of motions are considered, i.e., the time-convolution �TC� equation and
time-convolutionless �TCL� equation. That is, the full of the four cases are studied. It is turned out that the
expression of the complex admittance obtained by using the relaxation method with the TC equation exactly
coincides with that obtained by using the external-field method with the TC equation, while other two methods
give different forms. It is also explicitly demonstrated that all the expressions of the complex admittance
coincide with each other in the lowest Born approximation for the system-reservoir interaction. The formulas
necessary for the higher-order expansions in powers of the system-reservoir interaction are derived, and also
the expressions of the admittance in the nth order approximation are given. By transforming inverse-
temperature integrals into time integrals, the admittances are also given in the formulas with time-integrals
alone. To characterize the TC and TCL methods, we study the expressions of the admittances of two exactly
solvable models. Each exact form of admittance is compared with the results of the two methods in the lowest
Born approximation. It is found that depending on the model, either of TC and TCL would be the better
method.
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I. INTRODUCTION

The complex admittance is a fundamental quantity to de-
scribe response of systems to an external field. Since the
magnetic resonance has been discovered �1�, experimental
and theoretical studies have been developed simultaneously
�2–4�. For example, the magnetic resonance �MR� has been
one of the most active fields to study the quantum response.
Kubo and Tomita gave a unified view point to express the
response function by the autocorrelation function �5�, which
was extended to the general formula of linear response �6�.

Although the Kubo formula �6� gives a general form of
the complex admittance, there are several types of formula-
tion to take into account effects of the interaction of a quan-
tum system with its heat reservoir. When we study the time
dependence of a physical quantity A under a time-dependent
external field F conjugate to a physical quantity B, the re-
sponse function can be expressed in terms of a time-
correlation function of quantities A and B, i.e., �A�t�B�. In the
simplest treatment, we give the time evolution by the pure
quantum dynamics given by Hamiltonian HS of the system.
In this case, the complex admittance �AB��� is given by an
ensemble of delta function ��Ei−Ej −���, which denotes a
resonance between energy levels Ei and Ej of the system.

In many-body systems, the energy levels form a continu-
ous spectrum, and also the complex admittance has continu-
ous forms. There, line shape of the spectrum �the imaginary
part of the complex susceptibility� has an intrinsic line width

which is attributed to the energy structure of the system. In
such systems, effects of interactions on the spectrum line
shape have been developed �7�, and various properties have
been clarified. For example, Nagata and Tazuke found the
shift of resonance peak due to dipole-dipole interaction as a
function of relative angle between the external field and the
lattice axis of one-dimensional magnets �8,9�. Recently, stud-
ies to evaluate the susceptibility from microscopic Hamil-
tonian have been proposed, and new aspects of the resonance
have been discussed �10,11�.

On the other hand, the width of the line shape also ap-
pears due to the interaction of system with its heat reservoir.
Because of the developments of experimental methods, real
time quantum dynamics has become accessible in micro-
scopic quantum systems, e.g., the magnetization dynamics of
single molecule magnets �12–20� and also microscopic cir-
cuits which manipulate the degree of freedom of qubit �21�.
In these systems, it has been pointed out that the dissipation
plays important roles �17,22,23�, and also the nature of dis-
sipation has been discussed in detail �24�. It is interesting
problems to study effects of the dissipation on the complex
admittance for those systems.

If we consider the total system which consists of a system
of interest and of its heat reservoir, the formulation of a pure
quantum dynamics works in principle. However, it is diffi-
cult in practice, and we introduce a kind of dissipative dy-
namics instead of the quantum dynamics for the total system.
Usually we introduce the dissipative dynamics by coarse-
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graining of the heat reservoir. The dissipative dynamics is
expressed by the so-called quantum master equation �25–32�.

In order to take into account the dissipative dynamics, we
need to obtain the time evolution function for dissipative
systems. The phenomenological treatment of the dissipation
effects had been done by using the Bloch equation including
dissipation terms with the relaxation times T1 and T2 �3�. The
microscopic treatment was proposed using the projection op-
erator techniques by Nakajima �25�, Zwanzig �26� and Mori
�33�. They obtained the equations of motion in the non-
Markovian or “time-convolution �TC�” integral forms with
memory. However, in order to treat the memory term in a
compact way, the so-called “time-convolutionless �TCL�”
formalism has been introduced �28,34,35�. Recently, we have
studied a complete expression of the complex admittance in
the dissipative environment in the TC formalism �36,37�.
There, we have used a standard equation of the reduced den-
sity operator, but we have pointed out that the initial corre-
lation between the system and the heat reservoir cannot be
ignored in general when we treat the non-Markovian case.

Moreover, one of the authors has proposed the formalism
called the “TCLE method” in which the complex admittance
is directly calculated from time-convolutionless equations of
motion with external driving terms �38–44�, by generalizing
the method of Argyres and Kelley in which the admittance is
calculated from time-convolution equations of motion with
external driving terms in the Markovian approximation �45�.
Hereafter, we call the method in which the complex admit-
tance is directly calculated from equations of motion with
external driving terms, the “external-field method,” while we
call the method in which the Kubo formula is calculated for
systems with no external driving fields, the “relaxation
method.” Thus, we have the four types of formalism, that is,
the relaxation method or the external-field method with TC
or TCL equation of motion. The external-field method is con-
sidered to give the same results as those obtained using the
relaxation method in principle. They must also give the same
results because the original equation is the same. However,
the treatment of the contact with the heat reservoir can be
simplified in the external-field method. In practical calcula-
tions, we need to approximate perturbatively in order of the
strength of the interaction with the heat reservoir. If we trun-
cate the perturbation, the higher-order corrections may be
different in the four formalisms.

In the present paper, we consider a system interacting
with a heat reservoir in an external driving field, and derive
forms of the complex admittance using the four types of
formalism. Then, we investigate relations among them.
Namely, we examine the forms of admittance obtained by
using the following four methods: �1� the relaxation TC
method �the relaxation method with the TC equation�; �2� the
relaxation TCL method �the relaxation method with the TCL
equation�; �3� the TCE method �the external-field method
with the TC equation�; and �4� the TCLE method �the
external-field method with the TCL equation�. We also derive
the formulas necessary for the higher-order expansions in
powers of the system-reservoir interaction, and give the ex-
pressions of the admittance in the nth order approximation.
Moreover, in order to discuss the truncation effect in the four
methods, we study the two exactly solvable models, and

compare each exact form of admittance with the results ob-
tained by using the above methods in the lowest Born ap-
proximation for the system-reservoir interaction.

In Sec. II, we survey the derivation of the Kubo formula,
and explain the basic difference between the relaxation
method and external-field method. In Sec. III, we derive
forms of the complex admittance obtained by using the
above four methods. In Sec. IV, we investigate relations
among forms of the admittance obtained by using the four
methods in the lowest Born approximation for the system-
reservoir interaction. In Sec. V, we derive the formulas nec-
essary for the higher-order expansions in powers of the
system-reservoir interaction. In Sec. VI, we study the two
exactly solvable models to discuss the truncation effects in
different methods. In Sec. VII, we give a short summary and
some concluding remarks.

II. MODEL

We consider a quantum system interacting with a quan-
tum heat reservoir in an external driving field. We take the
Hamiltonian HT�t� of the total system as

HT�t� = HS + HR + HSR + Hed�t�

= H0 + HSR + Hed�t�

= H + Hed�t� , �1�

where HS is the Hamiltonian of the quantum system, HR is
the Hamiltonian of the heat reservoir, HSR is the interaction
Hamiltonian between the system and heat reservoir, and
Hed�t� is the interaction Hamiltonian of the quantum system
with the external driving field. Here, we express the Hamil-
tonian of the system and heat reservoir with interaction by
H=HS+HR+HSR, and the unperturbed Hamiltonian, i.e.,
the Hamiltonian of the system and heat reservoir without
interaction by H0=HS+HR. The density operator �T�t� of
the total system satisfies the Liouville equation

�d/dt��T�t� = − �i/���HT�t�,�T�t�� � − iLT�t��T�t� , �2�

which decides the dynamics corresponding to the Hamil-
tonian HT�t�, where the Liouvillian LT�t� corresponds to the
Hamiltonian HT�t�. Hereafter, a Liouvillian corresponding to
a Hamiltonian, say, H, is denoted as L, i.e., LA= �H ,A� /�.

We assume that the system and heat reservoir are in the
thermal equilibrium state �TE at temperature T initially, i.e.,
before the external driving field is turned on, where �TE is the
thermal equilibrium density operator for the system and res-
ervoir and is given by

�TE = exp�− �H�/Tr exp�− �H� , �3�

with �=1 / �kBT�. Here, notation Tr denotes the trace opera-
tions in the system and reservoir spaces, i.e., Tr=tr trR,
where notations tr and trR denote the trace operations in the
system and reservoir spaces, respectively. If we consider
only the system, the density operator for the system alone is
given by

�S = exp�− �HS�/tr exp�− �HS� . �4�

The density operator for the heat reservoir alone is given by
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�R = exp�− �HR�/trR exp�− �HR� . �5�

It should be noted that the equilibrium state of the system is
given by

�0 = trR �TE = trR exp�− �H�/Tr exp�− �H� , �6�

which includes the interaction between the system and res-
ervoir and is different from �S.

For the convenience of expressions, we define the nota-
tion �¯ �R=trR�¯�R�, and renormalize the Hamiltonian HS
of the system and the system-reservoir interaction HSR as

HS → HS + �HSR�R ⇒ HS, �7a�

HSR → HSR − �HSR�R ⇒ HSR. �7b�

Hereafter, we use HS and HSR for the Hamiltonians renor-
malized by Eqs. �7�, and then we have �HSR�R=0.

We now take the interaction of the system with the exter-
nal driving field as �6,45�

Hed�t� = − �
j

AjFj�t�

= − �
j

�
�

AjFj���e−i�t

= �
�

Hed���e−i�t, �8�

where Aj is the physical quantity conjugate to the force Fj�t�
which is a c-number function of the time t, and the summa-
tion �� is over � and −� for each �.

A. Kubo formula

We first survey the derivation of the Kubo formula briefly
�6�. The time evolution for the density operator of the total
system is given by Eq. �2�. The external driving field is as-
sumed to be turned on adiabatically at the initial time t= t0
which is infinite past �t0=−�� in the Kubo theory �6�. Ex-
panding the density operator �T�t� in powers of the external
driving field as

�T�t� = �T0�t� + �T1�t� + �T2�t� + ¯ , �9�

the zeroth-order part �T0�t� and first-order part �T1�t� satisfy
the following equations and initial conditions,

d

dt
�T0�t� = − iL�T0�t�; �T0�t0� = �TE, �10�

d

dt
�T1�t� = − iL�T1�t� − iLed�t��T0�t�; �T1�t0� = 0. �11�

Equation �10� has, by virtue of the thermal equilibrium den-
sity operator �3�, the solution

�T0�t� = exp	− iL�t − t0�
�T0�t0� = �TE, �12�

by which Eq. �11� can be formally solved as

�T1�t� = − i�
t0

t

d	 exp	− iL�t − 	�
Led�	��TE. �13�

Then, the first-order part in powers of the external driving
field for the expectation value of a physical quantity Ai of the
system, can be described as

Tr Ai�T1�t� =
i

�
�

j
�
�
�

t0

t

d	 Tr Ai e
−iL�t−	��Aj, �TE�Fj���e−i�	

=
i

�
�

j
�
�
�

0

t−t0

d	 Tr Ai e
−iL	�Aj, �TE�Fj���


 ei�	−i�t. �14�

The complex admittance �ij��� is defined in the limit
t0→−�, as �6�

Tr Ai�T1�t� = �
j

�
�

�ij���Fj���e−i�,t �t0 → − �� �15�

and takes the expressions �6�

�ij��� =
i

�
�

0

�

dt Tr Aie
−iLt�Aj,�TE�ei�t−�t �16a�

=
i

�
�

0

�

dt Tr Ai�Aj
H�− t�,�TE�ei�t−�t �16b�

=
i

�
�

0

�

dt Tr Ai
H�t��Aj,�TE�ei�t−�t �16c�

=
i

�
�

0

�

dt Tr�Ai
H�t�,Aj��TEei�t−�t, �16d�

which are called the Kubo formula, where �→+0. Here,
Ai

H�t� is the Heisenberg operator defined by

AH�t� = exp�iLt�A = exp�iHt/��A exp�− iHt/�� . �17�

In the definition �15� of the complex admittance, the summa-
tion �� for � is over the same frequencies as those in Eq.
�8�. In the Kubo formula, Ai

H�t� and Aj
H�t� denote the time

evolutions of the physical quantities Ai and Aj. Suzuki and
Kubo discussed the linear response by deriving the time evo-
lution of the physical quantity Ai using the stochastic dynam-
ics �46�. In the Kubo theory �6�, the complex admittance is
given by the time-correlation function for the system with no
external driving fields. We call the method that evaluates the
complex admittance for a quantum system in contact with its
heat reservoir using the Kubo formula, the “relaxation
method.” We next mention the basic difference between the
relaxation method and external-field method in the following
subsections.

B. Relaxation method

The relaxation method is the method in which complex
admittances are calculated using the Kubo formula for a
quantum system in contact with its heat reservoir. For a
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quantum system in contact with its heat reservoir, the opera-
tor with a physical quantity A of the quantum system,

Ã�t� = e−iLt�A,�TE� = e−iHt/��A,�TE�eiHt/�, �18�

satisfies the equation of motion

�d/dt�Ã�t� = − �i/���H,Ã�t�� = − iLÃ�t� . �19�

In order to eliminate irrelevant variables associated with the
heat reservoir, we introduce the time-independent projection
operators P and Q, which are taken as

P = �R trR, Q = 1 − P, trR �R = 1, �20�

where �R is the equilibrium density operator �5� of the heat
reservoir alone. Applying the projection operators P and Q
to Eq. �19�, we have the coupled equations,

�d/dt�PÃ�t� = − iPLPÃ�t� − iPLQÃ�t� , �21a�

�d/dt�QÃ�t� = − iQLPÃ�t� − iQLQÃ�t� . �21b�

In the relaxation method, complex admittances are calculated

by deriving the equation of motion for trR Ã�t� from the
above two Eqs. �20� and by substituting its solution into the
Kubo formula �16�.

C. External-field method

The external-field method is the method in which com-
plex admittances are directly calculated by solving the equa-
tion of motion including external driving terms for the total
system, which includes the external driving field. The density
operator �T�t� of the total system satisfies the Liouville equa-
tion �2�. We assume that the external driving field is turned
on adiabatically at the initial time t0=0, though the initial
time is infinite past �t0=−�� in the Kubo theory �6�. Expand-
ing the density operator in powers of the external driving
field as in Eq. �9�, the zeroth-order part �T0�t� and first-order
part �T1�t� satisfy the following equations and initial condi-
tions similar to Eqs. �10� and �11�:

d

dt
�T0�t� = − iL�T0�t�; �T0�0� = �TE, �22�

d

dt
�T1�t� = − iL�T1�t� − iLed�t��T0�t�; �T1�0� = 0. �23�

Applying the projection operators P and Q defined by Eq.
�20� to Eq. �23�, we have the coupled equations,

�d/dt�P�T1�t� = − iPLP�T1�t� − iPLQ�T1�t� − iPLed�t��TE,

�24a�

�d/dt�Q�T1�t� = − iQLP�T1�t� − iQLQ�T1�t� − iQLed�t��TE,

�24b�

where we have used the solution of Eq. �22�,

�T0�t� = exp�− iLt��T0�0� = �TE. �25�

In the external-field method, complex admittances are calcu-
lated by deriving the equation of motion for trR �T1�t� from
the above two Eqs. �24� and by solving it in the limit t→�,
which corresponds to the assumption that the initial time is
infinite past �t0=−�� in the Kubo theory �6�.

In the external-field method, it should be noticed that the
time evolution of the external driving force is included in the
projection procedure. Thus, the projection procedure is per-
formed for Eq. �23� of motion including external driving
terms in the external-field method, while the projection pro-
cedure is performed for Eq. �19� of motion including no
external driving terms in relaxation method.

III. COMPLEX ADMITTANCE

In this section, we derive forms of complex admittance
�ij��� for the two methods mentioned in the previous sec-
tion, i.e., the relaxation method and external-field method,
and for the two types of equation of motion, i.e., the time-
convolution equation and time-convolutionless equation.

A. Relaxation TC method

We first derive the form of complex admittance by the
“relaxation TC method” in which the Kubo formula is cal-
culated by solving the “time-convolution” �TC� equation of
motion for systems with no external driving fields. Equation
�21b� has the formal solution

QÃ�t� = − i�
0

t

d	 exp	− iQLQ�t − 	�
QLPÃ�	�

+ exp�− iQLQt�QÃ�0� , �26�

which has a form of the time-convolution �TC�. By substi-
tuting Eq. �26� into Eq. �21a�, the time-convolution equation

of motion for PÃ�t� can be obtained as

�d/dt�PÃ�t� = − iPLPÃ�t�

− �
0

t

d	PL exp	− iQLQ�t − 	�
QLPÃ�	�

− iPL exp�− iQLQt�QÃ�0� . �27�

By virtue of the projection operators �20�, the above equation
is reduced to the TC equation of motion

�d/dt�ã�t� = − iLSã�t� + C̄�t,	ã
� + Ī�t� , �28�

for the reduced operator ã�t� defined by

ã�t� = trR Ã�t� = trR exp�− iLt��A,�TE� , �29�

where the collision term C̄�t , 	ã
� and the inhomogeneous

term Ī�t� are, respectively, given by

C̄�t,	ã
� = − �
0

t

d	 trR LSR exp	− iQLQ�t − 	�
LSR�Rã�	� ,

�30�
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Ī�t� = − i trR LSR exp�− iQLQt�Q�A,�TE� . �31�

The inhomogeneous term Ī�t� represents the effects of initial
correlation of the system and reservoir, because if the initial
state �TE given by Eq. �3� is approximated to the decoupled

one �0�R, i.e., �TE=�0�R, the term Ī�t� vanishes since
Q�A ,�TE�=Q�A ,�0��R=0. Performing the Fourier-Laplace
transformation for Eq. �28�, we have

− ã�0� − i�ã��� = − iLSã��� + C̄���ã��� + Ī��� , �32�

where ã���, C̄���, and Ī��� are given by

ã��� = �
0

�

dt ã�t�exp�i�t − �t�

= �
0

�

dt trR exp�− iLt��A,�TE�exp�i�t − �t���→+0,

�33�

C̄��� = − �
0

�

dt�LSR exp�− iQLQt�LSR�Rexp�i�t − �t���→+0,

�34�

Ī��� = − i�
0

�

dt trR LSR exp�− iQLQt�Q�A,�TE�


exp�i�t − �t���→+0. �35�

Considering that

ã�0� = trR Ã�0� = trR�A,�TE� = �A,�0� , �36�

Equation �32� can be formally solved as

ã��� = „i�LS − �� − C̄���…−1	�A,�0� + Ī���
 . �37�

Substituting Eq. �37� into the Kubo formula �16�, the admit-
tance takes the form

�ij
RTC��� =

i

�
�

0

�

dt Tr Ai exp�− iLt��Aj, �TE�exp�i�t�

=
i

�
�

0

�

dt tr Ai ãj�t�exp�i�t�

=
i

�
tr Ai ãj���

= tr Ai
1

i�LS − �� − C̄���
 i

�
�Aj,�0� + D̄j���� ,

�38�

which is a general form of admittance derived using the re-
laxation TC method under thermal equilibrium initial condi-

tions, where D̄j��� comes from the inhomogeneous term Ī�t�
in Eq. �28�, represents the effects of initial correlation of the
system and reservoir and is given by

D̄j��� =
i

�
Ī j��� =

1

�
�

0

�

dt trR LSR


exp�− iQLQt�Q�Aj,�TE�


exp�i�t − �t���→+0. �39�

Expanding Eq. �28� up to second order in powers of the
system-reservoir interaction HSR, it reduces to

�d/dt�ã�t� = − iLSã�t� + C̄�2��t,	ã
� + Ī�2��t� , �40�

where the collision term C̄�2��t , 	ã
� and the inhomogeneous

term Ī�2��t� are, respectively, given by

C̄�2��t,	ã
� = − �
0

t

d	 �LSR exp	− iL0�t − 	�
LSR�Rã�	� ,

�41�

Ī�2��t� = i�
0

�

d�� trR LSR exp�− iL0t��A,�S�RHSR�− i����� .

�42�

Here, HSR�t� is defined by

HSR�t� = exp�iL0t�HSR = exp�iH0t/��HSR exp�− iH0t/�� .

�43�

Performing the Fourier-Laplace transformation for Eq. �40�
and substituting its formal solution into the Kubo formula
�16�, the admittance takes the form

�ij
RTC��� = tr Ai

1

i�LS − �� − C̄�2����


 i

�
�Aj,�S + �0

�2�� + D̄j
�2����� , �44�

which is a general form of admittance derived using the re-
laxation TC method in the lowest Born approximation for the

system-reservoir interaction, where �0
�2�, C̄�2���� and D̄j

�2����
are, respectively, given by

�0
�2� = �S�

0

�

d�1�
0

�1

d�2	trR �RHSR�− i��1�HSR�− i��2�

− Tr �S�RHSR�− i��1�HSR�− i��2�
 , �45�

C̄�2���� = − �
0

�

d	�LSR exp�− iL0	�LSR�Rexp�i�	�

= − �
0

�

d	�LSRLSR�− 	��Rexp	i�� − LS�	
 , �46�
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D̄j
�2���� =

i

�
Ī j

�2����

=
− 1

�
�

0

�

d	�
0

�

d�� trR LSR exp�− iL0	�


�Aj,�S�RHSR�− i�����exp�i�	� . �47�

The term D̄j
�2���� represents the effects of initial correlation

of the system and reservoir. The above result �44� can be
obtained by expanding Eq. �32� up to second order in powers
of the system-reservoir interaction too. By using this for-
mula, we can make a unified numerical method to treat sys-
tems with large number of spins, and can study relations
between the spin-spin interaction and the noise effects on the
line shape of magnetic resonance �37�.

B. Relaxation TCL method

One of the authors has derived the form of complex ad-
mittance by the “relaxation TCL method” in which the Kubo
formula is calculated by solving the “time-convolutionless”
equation of motion for systems with no external driving
fields �43,47�. We here survey the derivation of the form of
complex admittance by the relaxation TCL method for com-
parison. In order to renormalize the time convolution in the
formal solution �26� of Eq. �21b�, we write the formal solu-
tion of Eq. �19� in the form

Ã�t� = exp	− iL�t − 	�
Ã�	� or Ã�	� = exp	iL�t − 	�
Ã�t� ,

�48�

which is substituted into Eq. �26� to give

QÃ�t� = 	��t� − 1
PÃ�t� + ��t�exp�− iQLQt�QÃ�0� ,

�49�

where ��t� is defined by

��t� = 1 + i�
0

t

d	 exp�− iQLQ	�QLSRP exp�iL	��−1

.

�50�

By substituting the expression �49� for QÃ�t� into Eq. �21a�,
the “time convolutionless” equation of motion for PÃ�t� can
be obtained as

�d/dt�PÃ�t� = − iPLPÃ�t� − iPL	��t� − 1
PÃ�t�

− iPL��t�exp�− iQLQt�QÃ�0� . �51�

By virtue of the projection operators �20�, the above equation
is reduced to the TCL equation of motion for the reduced
operator ã�t� as

�d/dt�ã�t� = − iLSã�t� + C�t�ã�t� + I�t� , �52�

where the collision operator C�t� and the inhomogeneous
term I�t� are, respectively, given by

C�t� = − i trR LSR	��t� − 1
�R � − i�LSR	��t� − 1
�R,

�53�

I�t� = − i trR LSR��t�exp�− iQLQt�Q�A,�TE� . �54�

Equation �52� corresponds to the TCL equation of motion for
the reduced density operator of the system �28�. The inho-
mogeneous term I�t� represents the effects of initial correla-
tion of the system and reservoir, because if the initial state
�TE �Eq. �3�� is approximated to the decoupled one �0�R, the
term I�t� vanishes. Equation �52� has the formal solution

ã�t� = exp←− iLSt + �
0

t

d	C�	��ã�0�

+ �
0

t

d	 exp←− iLS�t − 	� + �
	

t

dsC�s��I�	� .

�55�

Substituting Eq. �55� into the Kubo formula �16�, the admit-
tance takes the form �43�

�ij
RTCL��� =

i

�
�

0

�

dt Tr Ai exp�− iLt��Aj,�TE�exp�i�t�

=
i

�
�

0

�

dt tr Aiãj�t�exp�i�t�

=
i

�
�

0

�

dt tr Ai exp←i�� − LS�t + �
0

t

d	C�	��

�Aj,�0� +

i

�
�

0

�

dt�
0

t

d	


tr Ai exp←i�� − LS��t − 	� + �
	

t

dsC�s��

Ij�	�exp�i�	� , �56�

which is a general form of admittance derived using the re-
laxation TCL method under thermal equilibrium initial con-
ditions, where Ij�t� is equal to I�t� with Aj in place of A. The
first term of the above admittance �56� is the admittance
obtained using the conventional relaxation method under the
decoupled initial condition �T�t0�=�TE⇒�0�R, and its sec-
ond term comes from the inhomogeneous term I�t� in Eq.
�52� and represents the effects of initial correlation of the
system and reservoir.

Expanding Eq. �52� up to second order in powers of the
system-reservoir interaction HSR, it reduces to

�d/dt�ã�t� = − iLSã�t� + C�2��t�ã�t� + I�2��t� , �57�

with

C�2��t� = − �
0

t

d	�LSR exp�− iL0	�LSR exp�iL0	��R

= − �
0

t

d	�LSRLSR�− 	��R, �58�
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I�2��t� = Ī�2��t�

= i�
0

�

d�� trR LSR exp�− iL0t��A,�S�RHSR�− i����� .

�59�

Solving Eq. �57� formally and substituting its solution into
the Kubo formula �16�, the admittance takes the form �42,43�

�ij
RTCL��� =

i

�
�

0

�

dt tr Ai exp←i�� − LS�t + �
0

t

d	 C�2��	��

�Aj,�S + �0

�2�� +
i

�
�

0

�

dt�
0

t

d	


tr Ai exp←i�� − LS��t − 	� + �
	

t

dsC�2��s��

Ij

�2��	�exp�i�	� , �60�

which is a general form of the admittance derived using the
relaxation TCL method in the lowest Born approximation for
the system-reservoir interaction, where Ij

�2��t� is equal to
I�2��t� with Aj in place of A. The second term of the above
admittance comes from the inhomogeneous term I�2��t� in
Eq. �57� and represents the effects of initial correlation of the
system and reservoir.

C. TCE method

We next derive the form of complex admittance by the
“TCE method” in which complex admittances are directly
calculated by solving the time-convolution �TC� equation of
motion including external driving terms. Equation �24b� has
the formal solution

Q�T1�t� = − i�
0

t

d	 exp	− iQLQ�t − 	�



	QLP�T1�	� + QLed�	��TE
 , �61�

which has a form of the time convolution. By substituting the
time-convolution expression �61� for Q�T1�t� into Eq. �24a�
directly, the time-convolution equation of motion for P�T1�t�
can be obtained as

�d/dt�P�T1�t� = − iPLP�T1�t�

− PL�
0

t

d	 exp	− iQLQ�t − 	�
QLP�T1�	�

− iPLed�t��TE − PL�
0

t

d	


exp	− iQLQ�t − 	�
QLed�	��TE. �62�

By virtue of the projection operators �20�, Eq. �62� is re-
duced to the TC equation of motion for �1�t� �=trR �T1�t��
�45�,

�d/dt��1�t� = − iLS�1�t� + C̄�t,	�1
� − iLed�t��0 + D̄�t� .

�63�

On the right-hand side of Eq. �63�, the collision term

C̄�t , 	�1
� and the inhomogeneous term D̄�t� are given by

C̄�t,	�1
� = − �
0

t

d	 trR LSR exp	− iQLQ�t − 	�
LSR�R�1�	�

= − �
0

t

d	�LSR exp�− iQLQ	�LSR�R�1�t − 	� , �64�

D̄�t� = − �
0

t

d	 trR LSR exp	− iQLQ�t − 	�
Led�	�Q�TE

= − �
0

t

d	 trR LSR exp�− iQLQ	�Led�t − 	�Q�TE.

�65�

The inhomogeneous term D̄�t� is called the “interference
term” in the TC equation, and represents the effects of initial
correlation of the system and reservoir, because if the initial
state �TE �Eq. �3�� is approximated to the decoupled one

�0�R, the interference term D̄�t� vanishes. We now take into
account the interaction of the system with the external driv-
ing field, which is turned on adiabatically at the initial time
t=0, to be given by the Hamiltonian �8�. The admittance
�ij��� for the physical quantities Ai and Aj of the system is
defined in the limit t→�, as

Tr Ai�T1�t� = tr Ai�1�t� = �
j

�
�

�ij���Fj���e−i�t �t → �� ,

�66�

which corresponds to Eq. �15�. We assume that the correla-
tion times of the heat reservoir are finite, that the integrands
of Eqs. �64� and �65� vanish for finite 	 in the limit t→�,
and that Eq. �63� has a stationary solution of the form

�1�t� = �
�

�1���e−i�t �t → �� . �67�

The summations �� for � in Eqs. �66� and �67� are over the
same frequencies as those in Eq. �8�. Then, �1��� satisfies
the equation

− i��1��� = − iLS�1��� + C̄����1��� − iLed����0 + D̄��� ,

�68�

which has the formal solution

�1��� = „i�LS − �� − C̄���…−1	− iLed����0 + D̄���
 ,

�69�

where C̄��� is the collision operator given by Eq. �34�, and

D̄��� is the interference term defined through the relation
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D̄�t� = �
�

D̄���e−i�t �t → �� �70�

and takes the expression

D̄��� = − �
0

�

d	 trR LSR exp�− iQLQ	�Led���


Q�TE exp�i�	� . �71�

In the relation �70�, the summation �� for � is over the same
frequencies as those in Eq. �8�. By substituting the formal
solution �69� into Eq. �67� and by using the definition �66� of
the admittance, we can obtain

�ij
TCE��� = tr Ai

1

i�LS − �� − C̄���
 i

�
�Aj,�0� + D̄j���� ,

�72�

which is a general form of the admittance obtained using the

TCE method, where D̄j��� is the interference term given by
Eq. �39� and represents the effects of initial correlation of the
system and reservoir. We notice that the admittance �72� ob-
tained using the TCE method has exactly the same form as
the admittance �38� obtained using the relaxation TC
method.

Expanding Eq. �68� up to second order in powers of the
system-reservoir interaction HSR, it reduces to

− i��1��� = − iLS�1��� + C̄�2�����1��� − iLed�����S + �0
�2��

+ D̄�2���� , �73�

where the collision operator C̄�2���� is given by Eq. �46� and

the interference term D̄�2���� is given by

D̄�2���� = �
0

�

d	�
0

�

d�� trR LSR exp�− iL0	�Led����S�R


HSR�− i����exp�i�	� , �74�

which is shown in Appendix A to coincide with

D̄�2���� = i�
0

�

d	�
0

	

ds trR LSR exp�− iL0s�Led���


exp	iL0�s − 	�
LSR�S�R exp�i�s� . �75�

Substituting the formal solution of Eq. �73�,

�1��� = „i�LS − �� − C̄�2����…−1


	− iLed�����S + �0
�2�� + D̄�2����
 �76�

into Eq. �67� and using the definition �66� of the admittance,
the admittance takes the form

�ij
TCE��� = tr Ai

1

i�LS − �� − C̄�2����


 i

�
�Aj,�S + �0

�2�� + D̄j
�2����� , �77�

which has the same form as the admittance �44� obtained

using the relaxation TC method in the lowest Born approxi-
mation for the system-reservoir interaction. Here, the inter-

ference term D̄j
�2���� is given by Eq. �47�, is shown in Ap-

pendix A to coincide with

D̄j
�2���� = −

i

�
�

0

�

d	�
0

	

ds trR LSR exp�− iL0s�


�Aj,exp	iL0�s − 	�
LSR�S�R�exp�i�s� , �78�

and represents the effects of initial correlation of the system
and reservoir. The above result �77� can be obtained by ex-
panding the TC Eq. �63� up to second order in powers of the
system-reservoir interaction too. In the TCE method, the ad-
mittance �77� is obtained by the lowest Born approximation
of Eqs. �63� or �68� including external driving terms, while
in the relaxation TC method, the admittance �44� is obtained
by the lowest Born approximation of Eqs. �28� or �32� in-
cluding no external driving terms. It should be noticed that
although the equations in which the perturbation is truncated
are different from each other in the two methods, the expres-
sions of the obtained admittances coincides with each other.

D. TCLE method

One of the authors has proposed and has studied the
“TCLE method” in which the complex admittance is directly
calculated by solving the time-convolutionless �TCL� equa-
tions of motion including external driving terms �38–44�.
However, the exact expression of complex admittance ob-
tained using the TCLE method has not been derived. We here
derive the exact form of complex admittance by the TCLE
method and survey that method. In order to renormalize the
time convolution in Eq. �61�, we write the formal solution of
Eq. �23� in the form

�T1�	� = exp	iL�t − 	�
�T1�t�

+ i�
	

t

ds exp	iL�s − 	�
Led�s��TE, �79�

where we have used the solution �25� of Eq. �22�. Substitut-
ing Eq. �79� into Eq. �61� and solving it for Q�T1�t�, we have

Q�T1�t� = 	��t� − 1
P�T1�t� − i��t��
0

t

d	


exp	− iQLQ�t − 	�
Q�−1�	�Led�	��TE,

�80�

where ��t� is given by Eq. �50�. By substituting the above
expression for Q�T1�t� into Eq. �24a�, the time-
convolutionless equation of motion for P�T1�t� can be ob-
tained as

�d/dt�P�T1�t� = − iPLP�T1�t� − iPL	��t� − 1
P�T1�t�

− iPLed�t��TE − �
0

t

d	 PL��t�


exp	− iQLQ�t − 	�
Q�−1�	�Led�	��TE.

�81�
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By virtue of the projection operators �20�, Eq. �81� is re-
duced to the TCL equation of motion for �1�t� �=trR �T1�t��
�38,39,43�,

�d/dt��1�t� = − iLS�1�t� + C�t��1�t� − iLed�t��0 + D�t� .

�82�

On the right-hand side of Eq. �82�, C�t� is the collision op-
erator given by Eq. �53�, and D�t� describes the effects of
interference between the external driving field and heat res-
ervoir, is called the “interference term” and take the form

D�t� = − �
0

t

d	 trRLSR
1

1 − �t�
exp�− iQLQ	�Led�t − 	�Q�TE

+ �
0

t

d	 trR LSR
1

1 − �t�
exp�− iQLQ	��t − 	�


Led�t − 	��TE, �83�

with �t� defined by

�t� = 1 − �−1�t� = − i�
0

t

d	 exp�− iQLQ	�QLSRP exp�iL	� .

�84�

The first term of D�t� given by Eq. �83� is called the “first
interference term” and represents the effects of initial corre-
lation of the system and reservoir, because if the initial state
�TE �Eq. �3�� is approximated to the decoupled one �0�R, this
term vanishes. But, the first term of D�t� �Eq. �83�� includes

the memory effects and is different from D̄�t� given by Eq.
�65�. The second term of D�t� is called the “second interfer-
ence term” and represents the memory effects, which are the
effects of collision of the system with the heat reservoir,
because this term is derived by renormalizing the time con-
volution in Eq. �61�. We assume that the correlation times of
the heat reservoir are finite and that Eq. �82� has a stationary
solution of the form �67�. Then, �1��� satisfies the equation

− i��1��� = − iLS�1��� + C�1��� − iLed����0 + D��� .

�85�

On the right-hand side of Eq. �85�, C is the collision operator
given by

C = C��� = − i trR LSR�1 − �−1�R = − i�LSR�1 − �−1�R,

�86�

and D��� is the interference term defined through the rela-
tion

D�t� = �
�

D���e−i�t �t → �� �87�

and is shown in Appendix B to take the expression

D��� = − �
0

�

d	 trR LSR
1

1 − 
exp�− iQLQ	�Led���Q�TE


exp�i�	� − i�
0

�

d	�
0

	

ds trR LSR
1

1 − 


exp�− iQLQ	�QLSRP


exp	iL�	 − s�
Led����TE exp�i�s� , �88�

where  is given by

 = ��� = 1 − �−1���

= − i�
0

�

d	 exp�− iQLQ	�QLSRP exp�iL	� .

�89�

The summation �� in Eq. �87� is over the same frequencies
as those in Eq. �8�. By substituting the formal solution of Eq.
�85�,

�1��� = „i�LS − �� − C…−1	− iLed����0 + D���
 �90�

into Eq. �67� and by using the definition �66� of the admit-
tance for the interaction �8� of the system with the external
driving field, which is turned on adiabatically at initial time
t=0, we can obtain

�ij
TCLE��� = tr Ai

1

i�LS − �� − C
 i

�
�Aj,�0� + Dj���� ,

�91�

which is a general form of the admittance obtained using the
TCLE method, where the interference term Dj��� is given by

Dj��� =
1

�
�

0

�

d	 trR LSR
1

1 − 
exp�− iQLQ	�Q�Aj,�TE�


exp�i�	�

+
i

�
�

0

�

d	�
0

	

ds trRLSR
1

1 − 
exp�− iQLQ	�


QLSRP exp	iL�	 − s�
�Aj,�TE�exp�i�s� . �92�

The first term of Dj��� represents the effects of initial corre-
lation of the system and reservoir, and its second term rep-
resents the memory effects.

Expanding Eq. �85� up to second order in powers of the
system-reservoir interaction HSR, it reduces to

− i��1��� = − iLS�1��� + C�2��1��� − iLed�����S + �0
�2��

+ D�2���� , �93�

where the collision operator C�2� and the interference term
D�2���� are given by
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C�2� = C�2����

= − �
0

�

d	�LSR exp�− iL0	�LSR exp�iL0	��R

= − �
0

�

d	�LSRLSR�− 	��R, �94�

D�2���� = D̄�2���� − i�
0

�

d	�
0

	

ds trR LSR exp�− iL0	�LSR


exp	iL0�	 − s�
Led����S�R exp�i�s� , �95�

with D̄�2���� given by Eqs. �74� or �75�. The first term of
D�2����, which is called the “first interference term,” is equal

to the interference term D̄�2���� in the TC equation and rep-
resents the effects of initial correlation of the system and
reservoir. Its second term, which is called the “second inter-
ference term,” represents the memory effects. Substituting
the formal solution of Eq. �93�,

�1��� = „i�LS − �� − C�2�
…

−1	− iLed�����S + �0
�2�� + D�2����


�96�

into Eq. �67� and using the definition �66� of the admittance,
the admittance takes the form �41,43�

�ij
TCLE��� = tr Ai

1

i�LS − �� − C�2� i

�
�Aj,�S + �0

�2�� + Dj
�2����� ,

�97�

which is a general form of the admittance obtained using the
TCLE method in the lowest Born approximation for the
system-reservoir interaction. Here, the interference term
Dj

�2���� is given by

Dj
�2���� = D̄j

�2���� +
i

�
�

0

�

d	�
0

	

ds trR LSR exp�− iL0	�LSR


exp	iL0�	 − s�
�Aj,�S��R exp�i�s� , �98�

with D̄j
�2���� given by Eqs. �47� or �78�. The first term of

Dj
�2���� is equal to D̄j

�2���� and represents the effects of ini-
tial correlation of the system and reservoir. Its second term
represents the memory effects. The above result �97� can be
obtained by expanding the TCL equation �82� up to second
order in powers of the system-reservoir interaction too
�41,43�.

IV. RELATIONS AMONG ADMITTANCES

In this section, we examine the relations among the forms
of admittance derived in Secs. II and III analytically. As
found in the previous section, the admittance �38� obtained
using the relaxation TC method has the same form as the
admittance �72� obtained using the TCE method, i.e.,

�ij
RTC��� = �ij

TCE��� . �99�

We examine analytically the relations among the admittances
�44� �or �77��, �60� and �97�, which are obtained using the
relaxation TC method �or the TCE method�, the relaxation
TCL method and the TCLE method, respectively, in the low-
est Born approximation for the system-reservoir interaction.

One of the authors has investigated the relation between
the admittance �60� obtained using the relaxation TCL
method and the admittance �97� obtained using the TCLE
method �41–43�. We first survey the relation between the
admittances �60� and �97� in a compact way. The first term of
the admittance �ij

RTCL��� �Eq. �60�� can be rewritten as

„first term of �ij
RTCL��� ��60��… =

i

�
�

0

�

dt tr Ai exp←i�� − LS�t + C�2�t + �
0

t

d	„C�2��	� − C�2�
…��Aj,�S + �0

�2��

=
i

�
�

0

�

dt tr AiU��,t�exp←�
0

t

d	U−1��,	�„C�2��	� − C�2�
…U��,	���Aj,�S + �0

�2�� ,

�100�

with U�� , t� defined by

U��,t� = exp	i�� − LS�t + C�2�t
 , �101�

and can be expanded in powers of the system-reservoir interaction as

�first term of �ij
RTCL��� ��60��� =

i

�
�

0

�

dt tr AiU��,t��Aj,�S + �0
�2�� +

i

�
�

0

�

dt�
0

t

d	�
	

�

ds tr AiU��,t − 	�trR LSR


exp�− iL0s�LSR exp�iL0s��RU��,	��Aj,�S + �0
�2�� + ¯ , �102�
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where Eqs. �58� and �94� have been substituted into C�2��t� and C�2�, respectively. The first term of Eq. �102� can be integrated
to give

i

�
�

0

�

dt tr AiU��,t��Aj,�S + �0
�2�� =

i

�
tr Ai„i�LS − �� − C�2�

…

−1�Aj,�S + �0
�2�� . �103�

Considering that in the second term of Eq. �102�,

�
0

�

dt�
0

t

d	�
	

�

ds tr AiU��,t − 	� = �
0

�

d	�
	

�

dt�
	

�

ds tr AiU��,t − 	�

= �
0

�

d	�
	

�

ds tr Ai„i�LS − �� − C�2�
…

−1 = �
0

�

ds�
0

s

d	 tr Ai„i�LS − �� − C�2�
…

−1, �104�

the first term of the admittance �ij
RTCL��� �Eq. �60�� can be expressed as

„first term of �ij
RTCL��� ��60��… = tr Ai„i�LS − �� − C�2�

…

−1	�i/���Aj,�S + �0
�2�� + „second term of Dj

�2����…


+ „higher order terms �HOT�… , �105�

where Dj
�2���� is given by Eq. �98�. The second term of the admittance �60� can be rewritten by substituting Eq. �59�, as

„second term of �ij
RTCL��� ��60��… = −

1

�
�

0

�

dt�
0

t

d	 tr Ai exp←„i�� − LS� + C�2�
…�t − 	� + �

	

t

ds„C�2��s� − C�2�
…�


 �
0

�

d�� trR LSR exp�− iL0	��Aj,�S�RHSR�− i�����exp�i�	� , �106�

and can be expanded in powers of the system-reservoir interaction as

„second term of �ij
RTCL��� ��60��… = −

1

�
�

0

�

d	�
	

�

dt�
0

�

d�� tr Ai exp	„i�� − LS� + C�2�
…�t − 	�



trR LSR exp�− iL0	��Aj,�S�RHSR�− i�����exp�i�	� + ¯ , �107�

which can be expressed by integrating with respect to t, as

„second term of �ij
RTCL��� ��60��… = tr Ai„i�LS − �� − C�2�

…

−1
„D̄j

�2���� or first term of Dj
�2����… + HOT, �108�

where D̄j
�2���� is given by Eq. �47� and coincides with the

first term of Dj
�2����. Expansions �105� and �108� show that

the admittance obtained using the relaxation TCL method,
coincides with the admittance obtained using the TCLE
method in the lowest Born approximation for the system-
reservoir interaction �42,43�, i.e.,

�ij
RTCL��� ��60�� = �ij

TCLE��� ��97�� + HOT. �109�

We next examine the relation between the admittance �60�
obtained using the relaxation TCL method and the
admittance �44� obtained using the relaxation TC method
�or the admittance �77� obtained using the TCE method�.
The collision operator C̄�2���� given by Eq. �46� can be
rewritten as

C̄�2���� = − �
0

�

d	 trR LSR exp�− iL0	�LSR�R exp�i�	�

= C�2� + �C�2���� , �110�

with C�2� given by Eq. �94�, where �C�2���� is defined by

�C�2���� = − �
0

�

d	 trR LSR exp�− iL0	�LSR


	exp�i�	� − exp�iL0	�
�R. �111�

Then, the first term of the admittance �ij
RTCL��� given by Eq.

�60� can be rewritten as
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„first term of �ij
RTCL��� ��60��… =

i

�
�

0

�

dt tr Ai exp←i�� − LS�t + C̄�2����t + �
0

t

d	„C�2��	� − C̄�2����…��Aj,�S + �0
�2��

=
i

�
�

0

�

dt tr AiŪ��,t�exp←�
0

t

d	 Ū−1��,	�„C�2��	� − C�2� − �C�2����…Ū��,	���Aj,�S

+ �0
�2�� , �112�

with Ū�� , t� defined by

Ū��,t� = exp	i�� − LS�t + C̄�2����t
 , �113�

and can be expanded in powers of the system-reservoir interaction as

„first term of �ij
RTCL��� ��60��…

=
i

�
�

0

�

dt tr AiŪ��,t��Aj,�S + �0
�2�� +

i

�
�

0

�

dt�
0

t

d	 tr AiŪ��,t − 	�


�
	

�

ds trR LSR exp�− iL0s�LSR exp�iL0s��R + �
0

�

ds trR LSR exp�− iL0s�LSR	exp�i�s� − exp�iL0s�
�R�

Ū��,	��Aj,�S + �0

�2�� + ¯ , �114�

where Eqs. �58�, �94�, and �46� have been substituted into C�2��t�, C�2� and C̄�2����, respectively. The first term of Eq. �114� can
be integrated to give

i

�
�

0

�

dt tr AiŪ��,t��Aj,�S + �0
�2�� =

i

�
tr Ai„i�LS − �� − C̄�2����…−1�Aj,�S + �0

�2�� . �115�

The second term of Eq. �114� becomes, by integrating in the same procedure as in Eq. �104�, as follows:

i

�
�

0

�

d	 tr Ai„i�LS − �� − C̄�2����…−1�
0

	

ds trR LSR exp�− iL0	�LSR exp�iL0	�Ū��,s��R

+ �
0

�

ds trR LSR exp�− iL0	�LSR	exp�i�	� − exp�iL0	�
Ū��,s��R��Aj,�S + �0
�2��

=
i

�
�

0

�

d	 tr Ai„i�LS − �� − C̄�2����…−1trR LSR exp�− iL0	�LSRˆexp�iL0	�exp	i�� − LS�	 + C̄�2����	
 − exp�iL0	�

− „exp�i�	� − exp�iL0	�…‰„i�� − LS� + C̄�2����…−1�R�Aj,�S + �0
�2�� , �116�

which is the higher-order term in powers of the system-reservoir interaction. Thus, the first term of the admittance �ij
RTCL���

�Eq. �60�� can be expressed as

„first term of �ij
RTCL��� ��60��… = tr Ai„i�LS − �� − C̄�2����…−1�i/���Aj,�S + �0

�2�� + HOT. �117�

The second term of the admittance �ij
RTCL��� given by Eq. �60� can be rewritten by substituting Eq. �59�, as

„second term of �ij
RTCL��� ��60��…

=
− 1

�
�

0

�

dt�
0

t

d	�
0

�

d�� tr Ai exp←„i�� − LS� + C̄�2����…�t − 	� + �
	

t

ds„C�2��s� − C̄�2����…�

trR LSR exp�− iL0	��Aj,�S�RHSR�− i�����exp�i�	� , �118�

and can be expanded in powers of the system-reservoir interaction as
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„second term of �ij
RTCL��� ��60��… = −

1

�
�

0

�

d	�
	

�

dt�
0

�

d�� tr Ai exp	„i�� − LS� + C̄�2����…�t − 	�



trR LSR exp�− iL0	��Aj,�S�RHSR�− i�����exp�i�	� + ¯ , �119�

which can be expressed by integrating with respect to t, as

„second term of �ij
RTCL��� ��60��… = tr Ai„i�LS − �� − C̄�2����…−1D̄j

�2���� + HOT, �120�

with D̄j
�2���� given by Eq. �47�. Expansions �117� and �120� show that the admittance obtained using the relaxation TCL

method, coincides with the admittance obtained using the relaxation TC method �or the admittance obtained using the TCE
method� in the lowest Born approximation for the system-reservoir interaction, i.e.,

�ij
RTCL��� ��60�� = �ij

RTC��� ��44�� „or �ij
TCE��� ��77��… + HOT. �121�

We also examine the relation between the admittance �44� obtained using the relaxation TC method �or the admittance �77�
obtained using the TCE method� and the admittance �97� obtained using the TCLE method. The operator

�i�LS−��− C̄�2�����−1 can be rewritten by using �C�2���� given by Eq. �111�, as

„i�LS − �� − C̄�2����…−1 = 	i�LS − �� − C�2� − �C�2����
−1

=ˆ�i�LS − �� − C�2��	1 + „i�LS − �� − C�2�
…

−1�− �C�2�����
‰−1

=	1 + „i�LS − �� − C�2�
…

−1
„− �C�2����…
−1

„i�LS − �� − C�2�
…

−1, �122�

and can be expanded in powers of the system-reservoir interaction as

„i�LS − �� − C̄�2����…−1 = „i�LS − �� − C�2�
…

−1	1 + �C�2����„i�LS − �� − C�2�
…

−1
 + ¯ . �123�

Substituting the above expansion into �ij
RTC��� given by Eq. �44� �or �ij

TCE��� given by Eq. �77��, we have

�ij
RTC��� = tr Ai„i�LS − �� − C�2�

…

−1	�i/���Aj,�S + �0
�2�� + D̄j

�2����


+ tr Ai„i�LS − �� − C�2�
…

−1�C�2����„i�LS − �� − C�2�
…

−1�i/���Aj,�S + �0
�2�� + HOT, �124�

where D̄j
�2���� is given by Eqs. �47� or �78�, and is equal to the first term of the interference term Dj

�2���� given by Eq. �98�.
Substituting Eq. �111� into the second term of the above expansion and considering that

�C�2����„i�LS − �� − C�2�
…

−1�i/���Aj,�S + �0
�2��

= − �
0

�

d	 trR LSR exp�− iL0	�LSRˆexp�i�	� − exp�iL0	�‰�R„i�LS − �� − C�2�
…

−1 i

�
�Aj,�S + �0

�2��

=
i

�
�

0

�

d	�
0

	

ds trR LSR exp�− iL0	�LSR expˆiL0�	 − s�‰�R�Aj,�S�exp�i�s� + HOT

= �second term of Dj
�2����� + HOT, �125�

we find that the admittance obtained using the relaxation TC method �or the admittance obtained using the TCE method�,
coincides with the admittance obtained using the TCLE method in the lowest Born approximation for the system-reservoir
interaction, i.e.,

�ij
RTC��� ��44�� = �ij

TCE��� ��77�� = �ij
TCLE��� ��97�� + HOT. �126�

According to the relations �99�, �109�, �121�, and �126�, the admittance obtained using the relaxation TC method �or the
TCE method�, the admittance obtained using the relaxation TCL method and the admittance obtained using the TCLE method,
coincide with each other in the lowest Born approximation for the system-reservoir interaction HSR, i.e.,

�ij
RTC��� = �ij

TCE��� = �ij
RTCL��� = �ij

TCLE��� „up to O�HSR
2 �… �127�

though the exact admittances �38� �or �72��, �56� and �91�, which are obtained using the relaxation TC method �or the TCE
method�, the relaxation TCL method and the TCLE method, respectively, take the forms different from each other. The
admittances that are obtained using the relaxation TC method �or the TCE method�, the relaxation TCL method and the TCLE
method, respectively, in the lowest Born approximation for the system-reservoir interaction, have the same second-order term
and the higher-order terms different from each other.
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V. HIGHER-ORDER EXPANSIONS

In this section, we derive the formulas necessary for the higher-order expansions in powers of the system-reservoir
interaction HSR, and give the forms of the admittances in the nth order approximation for HSR.

A. Expansions of the collision operators C(t), C, and C̄[�]

The collision operator C�t� given by Eq. �53� can be rewritten as

C�t� = − i�LSR�t�	1 − �t�
−1�R = − i�
n=1

�

�LSR�t�n�R, �128�

with �t� defined by Eq. �84�. Defining the unperturbed evolution operator U0�t� as

U0�t� = exp�− iL0t� = exp	− i�LS + LR�t
 , �129�

we have

LSR�− t� = U0�t�LSRU0
−1�t�, HSR�t� = „U0

−1�t�HSR… = exp�iH0t/��HSR exp�− iH0t/�� , �130�

and

exp�iLt� = U0
−1�t�exp←i�

0

t

d	 LSR�− 	�� , �131�

exp�− iQLQt�Q = exp→− i�
0

t

d	 QLSR�− 	�Q�U0�t�Q . �132�

Then, �t� defined by Eq. �84� can be rewritten as

�t� = − i�
0

t

d	 exp→− i�
0

	

ds1QLSR�− s1�Q�QLSR�− 	�P exp←i�
0

	

ds2LSR�− s2�� , �133�

which can be expanded in powers of the system-reservoir interaction HSR as

�t� = �1��t� + �2��t� + �3��t� + ¯ , �134�

where �n��t� is the nth order part in powers of HSR. The first-order, second-order, and third-order parts of �t� take the forms,
respectively,

�1��t� = − i�
0

t

d	 QLSR�− 	�P , �135�

�2��t� = �− i�2�
0

t

d	1�
0

	1

d	2	QLSR�− 	2�QLSR�− 	1�P − QLSR�− 	1�PLSR�− 	2�
 , �136�

�3��t� = �− i�3�
0

t

d	1�
0

	1

d	2�
0

	2

d	3	QLSR�− 	3�QLSR�− 	2�QLSR�− 	1�P + QLSR�− 	1�PLSR�− 	2�LSR�− 	3�

− QLSR�− 	2�QLSR�− 	1�PLSR�− 	3� − QLSR�− 	3�QLSR�− 	1�PLSR�− 	2�
 . �137�

In the derivation of �3��t�, the following integral transformation has been used

�
0

	1

d	2�
0

	1

d	3 = �
0

	1

d	2�
0

	2

d	3 + �
0

	1

d	2�
	2

	1

d	3 = �
0

	1

d	2�
0

	2

d	3 + �
0

	1

d	3�
0

	3

d	2. �138�

Expanding the operator C�t� in powers of the system-reservoir interaction HSR as

C�t� = C�2��t� + C�3��t� + C�4��t� + ¯ , �139�

where C�n��t� is the nth order part in powers of HSR, the second-order part of C�t� is given by Eq. �58� and the third-order and
fourth-order parts can be obtained as
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C�3��t� = �− i�3�
0

t

d	1�
0

	1

d	2�LSRLSR�− 	2�LSR�− 	1��R, �140�

C�4��t� = �− i�4�
0

t

d	1�
0

	1

d	2�
0

	2

d	3	�LSRLSR�− 	3�LSR�− 	2�LSR�− 	1��R − �LSRLSR�− 	3��R�LSR�− 	2�LSR�− 	1��R

− �LSRLSR�− 	2��R�LSR�− 	3�LSR�− 	1��R − �LSRLSR�− 	1��R�LSR�− 	3�LSR�− 	2��R
 , �141�

where the following integral transformation has been performed:

�
0

t

d	1�
0

	1

d	2�
0

t

d	 = �
0

t

d	1�
0

	1

d	2�
0

	2

d	 + �
	2

	1

d	 + �
	1

t

d	�
=�

0

t

d	1�
0

	1

d	2�
0

	2

d	 + �
0

t

d	1�
0

	1

d	�
0

	

d	2 + �
0

t

d	�
0

	

d	1�
0

	1

d	2. �142�

In the derivations of Eqs. �140� and �141�, we have considered that �HSR�−t��R=0 by virtue of the renormalization �7�. The nth
order part C�n��t� in the expansion of the collision operator C�t� has the following structure:

C�n��t� = �− i�n�
0

t

d	1�
0

	1

d	2�
0

	2

d	3 ¯ �
0

	n−2

d	n−1�LSR�0�LSR�− 	n−1�LSR�− 	n−2� ¯ LSR�− 	2�LSR�− 	1��oc, �143�

for n�2, where �¯ �oc denotes the “ordered cumulants” �48–50�.
The expansion formulas of the collision operator C can be obtained by expanding C�=C���� in powers of HSR as

C = C��� = C�2� + C�3� + C�4� + ¯ �C�n� = C�n����� . �144�

The collision operator C̄��� given by Eq. �34� can be rewritten by considering that �HSR�R=0, as

C̄��� = − �
0

�

dt�LSR exp→− i�
0

t

d	QLSR�− 	�Q�U0�t�LSR�
R

exp�i�t� . �145�

Expanding the collision operator C̄��� in powers of the system-reservoir interaction HSR as

C̄��� = C̄�2���� + C̄�3���� + C̄�4���� + ¯ , �146�

where C̄�n���� is the nth order part in powers of HSR, the second-order part of C̄��� is given by Eq. �46� and the third-order
and fourth-order parts can be obtained as

C̄�3���� = �− i�3�
0

�

d	1�
0

	1

d	2�LSRLSR�− 	2�LSR�− 	1��Rexp	i�� − LS�	1
 , �147�

C̄�4���� = �− i�4�
0

�

d	1�
0

	1

d	2�
0

	2

d	3	�LSRLSR�− 	3�LSR�− 	2�LSR�− 	1��R − �LSRLSR�− 	3��R�LSR�− 	2�LSR�− 	1��R



exp	i�� − LS�	1
 . �148�

The nth order part C̄�n���� in the expansion of the collision operator C̄��� has the following structure:

C̄�n���� = �− i�n�
0

t

d	1�
0

	1

d	2�
0

	2

d	3 ¯ �
0

	n−2

d	n−1�LSR�0�LSR�− 	n−1�LSR�− 	n−2� ¯ LSR�− 	2�LSR�− 	1��pcexp	i�� − LS�	1
 ,

�149�

for n�2, where �¯ �pc denotes the “partial cumulants” �48–50�.

B. Expansions of the inhomogeneous terms and interference terms

We first expand the thermal equilibrium state �TE given by Eq. �3� in powers of the system-reservoir interaction HSR.
Writing the expansion of exp�−�H�=exp	−��H0+HSR�
 in powers of HSR as
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exp�− �H� = exp�− �H0�exp←− �
0

�

d�� exp���H0�HSR exp�− ��H0�� = exp�− �H0�1 + �
n=1

�

�n� , �150�

with �n defined by

�n = �− �n�
0

�

d�1�
0

�1

d�2¯�
0

�n−1

d�nHSR�− i��1�HSR�− i��2� ¯ HSR�− i��n� , �151�

we have

Tr exp�− �H� = 	Tr exp�− �H0�
 · �1 + ��, � = �2 + �3 + �4 + ¯ , �152�

where we have defined

�n = Tr	exp�− �H0��n
/„Tr exp�− �H0�… = Tr �S�R�n,

=�− �n�
0

�

d�1�
0

�1

d�2¯�
0

�n−1

d�n�HSR�− i��1�HSR�− i��2� ¯ HSR�− i��n��SR,

�153�

with the notation �¯ �SR defined by �¯ �SR=Tr �S�R¯, where �S and �R are given by Eqs. �4� and �5�, respectively. Here, we
have considered that �HSR�−i����R=0. Then, �TE can be expanded as

�TE = exp�− �H0��1 + �1 + �2 + �3 + ¯�/	„Tr exp�− �H0�… · �1 + ��


=�S�R�1 + �1 + �2 + �3 + ¯��1 − � + �2 − �3 + ¯� . �154�

Expanding �TE in powers of the system-reservoir interaction HSR as

�TE = �TE
�0� + �TE

�1� + �TE
�2� + �TE

�3� + ¯ , �155�

where �TE
�n� is the nth order part in powers of HSR, we have

�TE
�0� = �S�R, �TE

�1� = �S�R�1 = − �S�R�
0

�

d�1HSR�− i��1� , �156�

�TE
�2� = �S�R��2 − �2� = �S�R�

0

�

d�1�
0

�1

d�2	HSR�− i��1�HSR�− i��2� − �HSR�− i��1�HSR�− i��2��SR
 , �157�

�TE
�3� = �S�R��3 − �3 − �1�2�

=− �S�R�
0

�

d�1�
0

�1

d�2�
0

�2

d�3	HSR�− i��1�HSR�− i��2�HSR�− i��3� − �HSR�− i��1�HSR�− i��2�HSR�− i��3��SR


+ �S�R�
0

�

d��HSR�− i�����
0

�

d�1�
0

�1

d�2�HSR�− i��1�HSR�− i��2��SR, �158�

�TE
�4� = �S�R	�4 − �4 − ��2 − �2��2 − �1�3


=�S�R�
0

�

d�1�
0

�1

d�2�
0

�2

d�3�
0

�3

d�4	HSR�− i��1�HSR�− i��2�HSR�− i��3�HSR�− i��4�

− �HSR�− i��1�HSR�− i��2�HSR�− i��3�HSR�− i��4��SR


− �S�R�
0

�

d�1�
0

�1

d�2	HSR�− i��1�HSR�− i��2� − �HSR�− i��1�HSR�− i��2��SR



�
0

�

d���
0

��
d���HSR�− i����HSR�− i�����SR

− �S�R�
0

�

d��HSR�− i�����
0

�

d�1�
0

�1

d�2�
0

�2

d�3�HSR�− i��1�HSR�− i��2�HSR�− i��3��SR. �159�
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The inhomogeneous terms Ī�t� and I�t� which are given by Eqs. �31� and �54�, can be rewritten using Eq. �132� as

Ī�t� = − i · trR LSR exp→− i�
0

t

d	 QLSR�− 	�Q�U0�t�Q�A,�TE� , �160�

I�t� = − i · trRLSR	1 − �t�
−1exp→− i�
0

t

d	 QLSR�− 	�Q�U0�t�Q�A,�TE� , �161�

which can be expanded in powers of the system-reservoir interaction HSR, respectively, as

Ī�t� = Ī�2��t� + Ī�3��t� + Ī�4��t� + ¯ , I�t� = I�2��t� + I�3��t� + I�4��t� + ¯ , �162�

because Ī�1��t�= I�1��t�=0 according to Q�TE
�0�=Q�S�R=0, where Ī�n��t� and I�n��t� are the nth order parts in powers of HSR. The

second-order parts are given by Eqs. �42� and �59�, and the third-order and fourth-order parts can be obtained as

Ī�3��t� = I�3��t� = �
0

t

d	�
0

�

d�1 trR LSRLSR�− 	�U0�t��A,�S�RHSR�− i��1��

− i�
0

�

d�1�
0

�1

d�2 trR LSRU0�t��A,�S�RHSR�− i��1�HSR�− i��2�� , �163�

Ī�4��t� = − i�
0

t

d	1�
0

	1

d	2�
0

�

d�1 trR LSRLSR�− 	2�QLSR�− 	1�U0�t��A,�S�RHSR�− i��1��

− �
0

t

d	�
0

�

d�1�
0

�1

d�2 trR LSRLSR�− 	�U0�t��A,�S�R	HSR�− i��1�HSR�− i��2� − �HSR�− i��1�HSR�− i��2��R
�

+ i�
0

�

d�1�
0

�1

d�2�
0

�2

d�3 trR LSRU0�t��A,�S�RHSR�− i��1�HSR�− i��2�HSR�− i��3��

− i�
0

�

d���
0

�

d�1�
0

�1

d�2 trR LSRU0�t��A,�S�RHSR�− i������HSR�− i��1�HSR�− i��2��SR, �164�

I�4��t� = Ī�4��t� + i�
0

t

d	1�
0

	1

d	2�
0

�

d�1 trR LSRLSR�− 	1�PLSR�− 	2�U0�t��A,�S�RHSR�− i��1�� , �165�

where we have considered that �HSR�−t��R= �HSR�−i����R= �HSR�R=0 and Q�TE
�1�=�TE

�1�. The second term of Eq. �165� comes
from �t�=1−�−1�t� which produces by renormalizing the time convolution and represents the memory effect. Thus, the
fourth-order part I�4��t� of I�t� includes the memory effect.

The interference terms D̄��� and D��� which are given by Eqs. �71� and �88�, can be rewritten using Eqs. �131� and �132�
as

D̄��� = − �
0

�

d	 trR LSR exp→− i�
0

	

dsQLSR�− s�Q�U0�	�Led���Q�TEei�	, �166�

D��� = − �
0

�

d	 trR LSR��
n=0

�

n�exp→− i�
0

	

dsQLSR�− s�Q�U0�	�Led���Q�TEei�	

− i�
0

�

d	1�
0

	1

d	2 trR LSR��
n=0

�

n�exp→− i�
0

	1

ds1QLSR�− s1�Q�U0�	1�QLSR


 PU0
−1�	1 − 	2�exp←i�

0

	1−	2

ds2LSR�− s2��Led����TE exp�i�	2� , �167�

which can be expanded in powers of the system-reservoir interaction HSR, respectively, as
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D̄��� = D̄�2���� + D̄�3���� + D̄�4���� + ¯ , D��� = D�2���� + D�3���� + D�4���� + ¯ , �168�

because D̄�1����=D�1����=0 according to Q�TE
�0�=Q�S�R=0, where D̄�n���� and D�n���� are the nth order parts in powers of

HSR. Here,  is given by Eq. �89� and can be expanded in powers of HSR as =���=�1�+�2�+�3�+¯ with �n�

=�n����. The second-order parts are given by Eqs. �74� �or �75�� and �95�, and the third-order and fourth-order parts can be
obtained as

D̄�3���� = − i�
0

�

d	1�
0

	1

d	2�
0

�

d�1 trR LSRLSR�− 	2�U0�	1�Led����S�RHSR�− i��1�exp�i�	1�

− �
0

�

d	�
0

�

d�1�
0

�1

d�2 trR LSRU0�	�Led����S�RHSR�− i��1�HSR�− i��2�exp�i�	� , �169�

D�3���� = D̄�3���� − �
0

�

d	1�
0

	1

d	2�
0

	2

d	3 trR LSR	LSR�− 	3�LSR�− 	1�U0�	2�Led����S�R exp�i�	2�

+ LSR�− 	2�LSR�− 	1�U0�	3�Led����S�R exp�i�	3�
 , �170�

D̄�4���� = − �
0

�

d	1�
0

	1

d	2�
0

	2

d	3�
0

�

d�1 trR LSRLSR�− 	3�QLSR�− 	2�U0�	1�Led����S�RHSR�− i��1�exp�i�	1�

+ i�
0

�

d	1�
0

	1

d	2�
0

�

d�1�
0

�1

d�2 trR LSRLSR�− 	2�U0�	1�Led����S�R exp�i�	1�


	HSR�− i��1�HSR�− i��2� − �HSR�− i��1�HSR�− i��2��R


+ �
0

�

d	�
0

�

d�1�
0

�1

d�2�
0

�2

d�3 trR LSRU0�	�Led����S�RHSR�− i��1�HSR�− i��2�HSR�− i��3�exp�i�	�

− �
0

�

d	�
0

�

d���
0

�

d�1�
0

�1

d�2 trR LSRU0�	�Led����S�RHSR�− i�����HSR�− i��1�HSR�− i��2��SRexp�i�	� ,

�171�

D�4���� = D̄�4���� + �
0

�

d	�
0

�

d	1�
0

	1

d	2�
0

�

d�1 trR LSRLSR�− 	1�PLSR�− 	2�U0�	�Led����S�RHSR�− i��1�exp�i�	�

+ i�
0

�

d	1�
0

	1

d	2�
0

	1

ds1�
0

s1

ds2 trR LSRLSR�− s2�QLSR�− s1�LSR�− 	1�U0�	2�Led����S�R exp�i�	2�

− i�
0

�

d	1�
0

	1

d	2�
0

�

ds1�
0

s1

ds2 trR LSRLSR�− s1�PLSR�− s2�LSR�− 	1�U0�	2�Led����S�R exp�i�	2�

+ i�
0

�

d	1�
0

	1

d	2�
0

	1−	2

d	3�
0

	3

d	4 trR LSRU0�	1�LSRPU0
−1�	1 − 	2�LSR�− 	3�LSR�− 	4�Led����S�Rexp�i�	2�

− �
0

�

d	1�
0

	1

d	2�
0

	1−	2

d	3�
0

�

d�1 trR LSRU0�	1�LSRPU0
−1�	1 − 	2�LSR�− 	3�Led����S�RHSR�− i��1�exp�i�	2�

− i�
0

�

d	1�
0

	1

d	2�
0

�

d�1�
0

�1

d�2 trR LSRLSR�− 	1�PU0�	2�Led����S�R exp�i�	2�


	HSR�− i��1�HSR�− i��2� − �HSR�− i��1�HSR�− i��2��SR
 , �172�

where we have considered that �HSR�−t��R= �HSR�−i����R= �HSR�R=0 and Q�TE
�1�=�TE

�1�. The interference term D��� consists of

the interference term D̄��� in the TC equation, which represents the effects of initial correlation of the system and reservoir,
and of the terms that represent the memory effects.
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C. Admittance in the nth order approximation for HSR

In this subsection, we give the forms of the admittances in the nth order approximation for the system-reservoir interaction
HSR. The admittance obtained using the relaxation TCL method by expanding Eq. �52� up to nth order in powers of HSR and
by proceeding in the same way as in Sec. III B, takes the form

�ij
RTCL��� =

i

�
�

0

�

dt tr Ai exp←i�� − LS�t + �
0

t

d	�
m=2

n

C�m��	���Aj,�S + �
m=2

n

�0
�m��

+
i

�
�

0

�

dt�
0

t

d	 tr Ai exp←�i�� − LS��t − 	� + �
	

t

ds�
m=2

n

C�m��s���
m=2

n

Ij
�m��	�exp�i�	� , �173�

with �0
�m�=trR �TE

�m�, where Ij
�n��t� is equal to I�n��t� with Aj in place of A. The admittance obtained using the relaxation TC

method by expanding Eqs. �28� or �32� up to nth order in powers of HSR and by proceeding in the same way as in Sec. III A,
is equal to that obtained using the TCE method by expanding Eqs. �63� or �68� up to nth order in powers of HSR and by
proceeding in the same way as in Sec. III C, and takes the form

�ij
RTC��� = �ij

TCE��� = tr Ai�i�LS − �� − �
m=2

n

C̄�m�����−1 i

�
�Aj,�S + �

m=2

n

�0
�m�� + �

m=2

n

D̄j
�m����� . �174�

The second-order part D̄j
�2���� of D̄j��� is given by Eqs. �47� or �78�, and the third-order and fourth-order parts are given by

D̄j
�3���� =

i

�
�

0

�

d	1�
0

	1

d	2�
0

�

d�1 trR LSRLSR�− 	2�U0�	1��Aj,�S�RHSR�− i��1��exp�i�	1�

+
1

�
�

0

�

d	�
0

�

d�1�
0

�1

d�2 trR LSRU0�	��Aj,�S�RHSR�− i��1�HSR�− i��2��exp�i�	� , �175�

D̄j
�4���� =

1

�
�

0

�

d	1�
0

	1

d	2�
0

	2

d	3�
0

�

d�1	trR LSRLSR�− 	3�LSR�− 	2� − �LSRLSR�− 	3��RtrR LSR�− 	2�



U0�	1��Aj,�S�RHSR�− i��1��exp�i�	1�

−
i

�
�

0

�

d	1�
0

	1

d	2�
0

�

d�1�
0

�1

d�2 trR LSRLSR�− 	2�U0�	1�exp�i�	1�


�Aj,�S�R	HSR�− i��1�HSR�− i��2� − �HSR�− i��1�HSR�− i��2��R
�

−
1

�
�

0

�

d	�
0

�

d�1�
0

�1

d�2�
0

�2

d�3 trR LSRU0�	��Aj,�S�RHSR�− i��1�HSR�− i��2�HSR�− i��3��exp�i�	�

+
1

�
�

0

�

d	�
0

�

d���
0

�

d�1�
0

�1

d�2 trR LSRU0�	��Aj,�S�RHSR�− i������HSR�− i��1�HSR�− i��2��SRexp�i�	� .

�176�

The admittance obtained using the TCLE method by expanding Eqs. �82� or �85� up to nth order in powers of HSR and by
proceeding in the same way as in Sec. III D, takes the form

�ij
TCLE��� = tr Ai�i�LS − �� − �

m=2

n

C�m��−1 i

�
�Aj,�S + �

m=2

n

�0
�m�� + �

m=2

n

Dj
�m����� . �177�

The second-order part Dj
�2���� of Dj��� is given by Eq. �98�, and the third-order and fourth-order parts are given by

Dj
�3���� = D̄j

�3���� +
1

�
�

0

�

d	1�
0

	1

d	2�
0

	2

d	3	�LSRLSR�− 	3�LSR�− 	1��R�Aj�− 	2�,�S�exp�i�	2�

+ �LSRLSR�− 	2�LSR�− 	1��R�Aj�− 	3�,�S�exp�i�	3�
 , �178�
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Dj
�4���� = D̄j

�4���� −
1

�
�

0

�

d	�
0

�

d	1�
0

	1

d	2�
0

�

d�1�LSRLSR�− 	1��R trR LSR�− 	2�U0�	��Aj,�S�RHSR�− i��1��exp�i�	�

−
i

�
�

0

�

d	1�
0

	1

d	2�
0

	1

d	3�
0

	3

d	4	�LSRLSR�− 	4�LSR�− 	3�LSR�− 	1��R

− �LSRLSR�− 	4��R�LSR�− 	3�LSR�− 	1��R
�Aj�− 	2�,�S�exp�i�	2�

+
i

�
�

0

�

d	1�
0

	1

d	2�
0

�

d	3�
0

	3

d	4�LSRLSR�− 	3��R�LSR�− 	4�LSR�− 	1��R�Aj�− 	2�,�S�exp�i�	2�

−
i

�
�

0

�

d	1�
0

	1

d	2�
0

	1−	2

d	3�
0

	3

d	4�LSRLSR�− 	1��RU0�	2��LSR�− 	3�LSR�− 	4��R�Aj,�S�exp�i�	2�

+
1

�
�

0

�

d	1�
0

	1

d	2�
0

	1−	2

d	3�
0

�

d�1�LSRLSR�− 	1��RU0�	2�trR LSR�− 	3��Aj,�S�RHSR�− i��1��exp�i�	2�

+
i

�
�

0

�

d	1�
0

	1

d	2�
0

�

d�1�
0

�1

d�2�LSRLSR�− 	1��RU0�	2��Aj,�S	�HSR�− i��1�HSR�− i��2��R

− �HSR�− i��1�HSR�− i��2��SR
�exp�i�	2� , �179�

where A�t� is defined by

A�t� = exp�iLSt�A = exp�iHSt/��A exp�− iHSt/�� . �180�

As expressed using time integrals alone for the second-order interference terms D̄j
�2���� and Dj

�2���� in Eqs. �78� and �98�,
the inhomogeneous term Ij�t� and the interference terms D̄j��� and Dj��� can be expressed using time-integrals alone. By
virtue of the results of Appendixes A, C, and D, the second-order, third-order, and fourth-order parts Ij

�n��t� �n=2,3 ,4� of Ij�t�
take the forms using time integrals alone,

Ij
�2��t� = − �

t

�

d	 trR LSR�Aj�− t�,LSR�− 	��S�R� , �181�

Ij
�3��t� = i�

t

�

d	1�
0

t

d	2 trR LSRLSR�− 	2��Aj�− t�,LSR�− 	1��S�R�

+ i�
t

�

d	1�
t

	1

d	2 trR LSR�Aj�− t�,LSR�− 	2�LSR�− 	1��S�R� , �182�

Ij
�4��t� = �

t

�

d	1�
0

t

d	2�
0

	2

d	3	trR LSRLSR�− 	3�LSR�− 	2��Aj�− t�,LSR�− 	1��S�R�

− �LSRLSR�− 	3��RtrR LSR�− 	2��Aj�− t�,LSR�− 	1��S�R�


+ �
t

�

d	1�
t

	1

d	2�
0

t

d	3	trR LSRLSR�− 	3��Aj�− t�,LSR�− 	2�LSR�− 	1��S�R�

− �LSRLSR�− 	3��RtrR�Aj�− t�,LSR�− 	2�LSR�− 	1��S�R�


+ �
t

�

d	1�
t

	1

d	2�
t

	2

d	3 trR LSR�Aj�− t�,LSR�− 	3�LSR�− 	2�LSR�− 	1��S�R�

− �
t

�

d	1�
0

t

d	2�
0

	2

d	3�LSRLSR�− 	2��RtrR LSR�− 	3��Aj�− t�,LSR�− 	1��S�R� . �183�

The second-order interference terms D̄j
�2���� and Dj

�2���� given by Eqs. �78� and �98� can be, respectively, expressed in the
compact forms
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D̄j
�2���� = −

i

�
�

0

�

d	1�
0

	1

d	2 trR LSR�Aj�− 	2�,LSR�− 	1��S�R�exp�i�	2� , �184�

Dj
�2���� = D̄j

�2���� +
i

�
�

0

�

d	1�
0

	1

d	2�LSRLSR�− 	1��R�Aj�− 	2�,�S�exp�i�	2� . �185�

By virtue of the results of Appendixes A and C, the third-order interference term D̄j
�3���� given by Eq. �175� takes the form

using time integrals alone,

D̄j
�3���� = −

1

�
�

0

�

d	1�
0

	1

d	2�
0

	2

d	3	trR LSRLSR�− 	3��Aj�− 	2�,LSR�− 	1��S�R�exp�i�	2�

+ trR LSR�A�− 	3�,LSR�− 	2�LSR�− 	1��S�R�exp�i�	3�
 . �186�

The third-order interference term Dj
�3���� is given by Eq. �178� with the above D̄j

�3����. By virtue of the results of Appendixes

A, C, and D, the fourth-order interference terms D̄j
�4���� and Dj

�4���� given by Eqs. �171� and �172� take the forms using time
integrals alone,

D̄j
�4���� =

i

�
�

0

�

d	1�
0

	1

d	2�
0

	2

d	3�
0

	3

d	4	trR LSRLSR�− 	4�LSR�− 	3��Aj�− 	2�,LSR�− 	1��S�R�

− �LSRLSR�− 	4��RtrR LSR�− 	3��Aj�− 	2�,LSR�− 	1��S�R�
exp�i�	2�

+
i

�
�

0

�

d	1�
0

	1

d	2�
0

	2

d	3�
0

	3

d	4	trR LSRLSR�− 	4��Aj�− 	3�,LSR�− 	2�LSR�− 	1��S�R�

− �LSRLSR�− 	4��R�Aj�− 	3�,�LSR�− 	2�LSR�− 	1��R�S�
exp�i�	3�

+
i

�
�

0

�

d	1�
0

	1

d	2�
0

	2

d	3�
0

	3

d	4 trR LSR�Aj�− 	4�,LSR�− 	3�LSR�− 	2�LSR�− 	1��S�R�exp�i�	4� , �187�

Dj
�4���� = D̄j

�4���� −
i

�
�

0

�

d	1�
0

	1

d	2�
0

�

d	3�
0

	3

d	4�LSRLSR�− 	3��RtrR LSR�− 	4��Aj�− 	2�,LSR�− 	1��S�R�exp�i�	2�

−
i

�
�

0

�

d	1�
0

	1

d	2�
0

	1

d	3�
0

	3

d	4	�LSRLSR�− 	4�LSR�− 	3�LSR�− 	1��R

− �LSRLSR�− 	4��R�LSR�− 	3�LSR�− 	1��R
�Aj�− 	2�,�S�exp�i�	2�

+
i

�
�

0

�

d	1�
0

	1

d	2�
0

�

d	3�
0

	3

d	4�LSRLSR�− 	3��R�LSR�− 	4�LSR�− 	1��R�Aj�− 	2�,�S�exp�i�	2�

−
i

�
�

0

�

d	1�
0

	1

d	2�
0

	2

d	3�
0

	3

d	4�LSRLSR�− 	1��R�LSR�− 	2�LSR�− 	3��R�Aj�− 	4�,�S�exp�i�	4�

+
i

�
�

0

�

d	1�
0

	1

d	2�
0

	2

d	3�
	3

�

d	4�LSRLSR�− 	1��RtrR LSR�− 	2��Aj�− 	3�,LSR�− 	4��S�R�exp�i�	3�

−
i

�
�

0

�

d	1�
0

	1

d	2�
	2

�

d	3�
	2

	3

d	4�LSRLSR�− 	1��R�Aj�− 	2�,�LSR�− 	4�LSR�− 	3��R�S�exp�i�	2� , �188�

where we have performed some integral transformations as Eq. �A4�. By virtue of the results of Appendixes C–E,
�0

�n��=trR �TE
�n�� �n=2,3 ,4� can be expressed using time integrals as

�0
�2� = − �

0

�

d	1�
0

	1

d	2 trR LSR�− 	2�LSR�− 	1��S�R exp�− �	1���→+0, �189�

�0
�3� = i�

0

�

d	1�
0

	1

d	2�
0

	2

d	3 trR LSR�− 	3�LSR�− 	2�LSR�− 	1��S�R exp�− �	1���→+0, �190�
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�0
�4� = �

0

�

d	1�
0

	1

d	2�
0

	2

d	3�
0

	3

d	4 trR LSR�− 	4�LSR�− 	3�LSR�− 	2�LSR�− 	1��S�R exp�− �	1���→+0, �191�

where we have considered that �HSR�−i����R=0. Thus, the
admittances have been expressed using the time integrals
alone in the fourth-order approximation for the system-
reservoir interaction. In the higher-order approximation, the
admittances can be expressed using the time integrals alone
by the same way. This facilitates the calculations of the ad-
mittances, because when the time-correlation functions of
the heat reservoir are given, the admittances can be calcu-
lated.

VI. COMPARISON WITH ANALYTICALLY SOLVABLE
MODELS

In the previous sections, we have studied expressions of
the susceptibility in various methods. We may think some of
them is better than others. There have been discussed com-
parative merits and demerits of the TC and TCL methods.
Both of them are correct expression, and thus, if we take all
the terms in expansion, they must be the same. When we
truncate the perturbation at a finite term, they are different
with each other. Then, one of them gives the better results
than the other. In this section, we consider the two exactly
solvable models, and compare each exact form of admittance
with the results obtained by using the methods derived in
Sec. III in the lowest Born approximation.

A. Quantum oscillator model

We first consider the model of a system of quantum os-
cillator interacting with a heat reservoir composed of many
quantum oscillators. We study the susceptibility of the sys-
tem for an external driving field which is a periodic function
of the frequency �. We adopt the following Hamiltonians:

HS = ��0b†b, HR = �
�

���b�
†b�, �192�

HSR = �bR† + �b†R �R = �
�

g�b�� , �193�

where b is the boson operator of the quantum oscillator sys-
tem, b� represents the boson operator of the mode � which
composes the heat reservoir, �0 and �� are the characteristic
frequencies of the oscillators, and g� is the coupling constant
between the boson system and the boson of the mode �. The
interaction of the quantum oscillator system with the external
driving field is given by

Hed�t� = − �bF�ei�t − �b†Fe−i�t, �194�

where F is the magnitude of the external driving force. Then,
HSR�t� defined by the interaction representation �43� takes
the form

HSR�t� = ��
�

	g�
�bb�

† exp	− i��0 − ���t


+ g�b†b� exp	i��0 − ���t

 . �195�

The admittance �bb†��� can be written as �6�

�bb†��� =
i

�
�

0

�

dt Tr �be−iLt��b†,�TE�ei�t−�t

=i��
0

�

dt Tr be−iL0t exp←− i�
0

t

d	LSR�	��

 �b†,�TE�ei�t−�t, �196�

with �→+0. As shown in Appendix F, the above admittance
can be exactly calculated as

�bb†��� =
i�

i��0 − �̄� + ���̄�
, �197�

with �̄=�+ i� ��→+0�, where ���� is defined by

���̄� = �
0

�

d	��R�	�,R†��Rei�̄	 �198a�

=i�
�

�g��2/��̄ − ��� . �198b�

Applying the relaxation TC method �or the TCE method�
for the Hamiltonians �192�–�194�, we obtain

tr bC̄�2����ãb†��� = − ���̄� tr bãb†��� + HOT, �199�

tr bĪb†
�2���� = − �

0

�

d	�
0

	

ds	�R�	�R†�R tr��b†,b�S�

− �R†R�	��R tr��b†,�Sb�
ei�0	+i��−�0�s = 0,

�200�

with �̄=�+ i� ��→+0�, where HOT denotes the higher-
order terms in powers of HSR. In the lowest Born approxi-
mation for the boson-reservoir interaction HSR, we have

	i��0 − �̄� + ���̄�
tr bãb†��� = tr bãb†�0� , �201�

which leads to the admittance

�bb†
RTC��� =

i

�
tr �bãb†��� =

i�

i��0 − �̄� + ���̄�
, �202�

with �̄=�+ i� ��→+0�. This is equal to the exact admittance
�197�. Therefore, for the quantum oscillator model under
consideration, the admittance �202� obtained by using the
relaxation TC method �or the TCE method� in the lowest
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Born approximation for the boson-reservoir interaction, co-
incides with the exact one.

Applying the relaxation TCL method for the Hamiltonians
�192�–�194�, we obtain

tr bC�2��t�ãb†�t� = − ���0,t�tr bãb†�t� , �203�

tr bIb†
�2��t� = − �

t

�

d		�R�	�R†�R tr��b†,b�S�

− �R†R�	��R tr��b†,�Sb�
ei�0�	−t� = 0,

�204�

where ��� , t� is defined by

���,t� = �
0

t

d	��R�	�,R†��Rei�	 �205a�

=i�
�

�g��2
1 − exp	i�� − ���t


� − ��

. �205b�

In the lowest Born approximation for the boson-reservoir
interaction HSR, we have the TCL equation

�d/dt�tr bãb†�t� = − i�0 tr bãb†�t� − ���0,t�tr bãb†�t� ,

�206�

which leads to the admittance �41�

�bb†
RTCL��� =

i

�
�

0

�

dt tr �bãb†�t�ei�̄t

= i��
0

�

dt expi��̄ − �0�t − �
0

t

d	 ���0,	�� ,

�207�

with �̄=�+ i� ��→+0�.
By using the TCLE method in the lowest Born approxi-

mation for the boson-reservoir interaction, the admittance
was obtained by one of the authors as �41�

�bb†
TCLE��� = �

i + ���̄�
i��0 − �̄� + ���0�

, �208�

with �̄=�+ i� ��→+0�, where ���̄� comes from the inter-
ference term and is given by

���̄� = „���̄� − ���̄0�…/��̄ − �0� . �209�

Now, we have found that the admittance �202� obtained
by using the relaxation TC method �or the TCE method� in
the lowest Born approximation for the boson-reservoir inter-
action is equal to the exact one �Eq. �197��. On the other
hand, the admittance �207� obtained by using the relaxation
TCL method and the admittance �208� obtained by using the
TCLE method take the forms different from the exact one
�Eq. �197��.

Let us compare these admittances analytically. The
second-order terms of these admittances in powers of the
boson-reservoir interaction coincide and are equal to

�bb†
�2� ��� =

i����̄�
��̄ − �0�2 = �

�

− ��g��2

��̄ − �0�2��̄ − ���
, �210�

with �̄=�+ i� ��→+0�. The fourth-order terms of those ad-
mittances are obtained, by expanding Eqs. �197� �or �202��,
�207� and �208� in powers of �, as

�bb†
�4� ��� = �bb†

RTC�4����

= −
����̄�2

��0 − �̄�3

= �
�,��

��g��2�g���
2

��0 − �̄�3��̄ − �����̄ − ����
, �211�

�bb†
TCLE�4���� = − �

���̄����0�
��0 − �̄�3

= �
�,��

��g��2�g���
2

��0 − �̄�3��̄ − �����0 − ����
, �212�

�bb†
RTCL�4���� = �

�,��

��g��2�g���
2

��0 − �̄���0 − �����0 − ����


  1

��0 − �̄�2 −
1

2� 1

��̄ − ���2 +
1

��̄ − ����
2�

+
1

2

2�0 − �� − ���

��0 − �̄���̄ + �0 − �� − ����


� 1

�̄ − ��

+
1

�̄ − ���
�� , �213�

with �̄=�+ i� ��→+0�. The fourth-order term �bb†
TCLE�4����

takes a form similar to the exact one �bb†
�4� ���. The fourth-

order term �bb†
RTCL�4���� takes a form different from the exact

�one. It should be noted that �bb†
TCLE�4���� and �bb†

RTCL�4����
coincide with the exact one �bb†

�4� ��� in the limit �→�0. Thus
for the quantum oscillator model �192�–�194�, the relaxation
TC method �or the TCE method� in the lowest Born approxi-
mation for the boson-reservoir interaction gives the exact
admittance, and in that approximation the TCLE method
gives the form similar to the exact one, while the relaxation
TCL method gives the form different from the exact one in
the higher-order terms.

B. Quantum spin model

We next consider the model of a quantum spin system of
magnitude S=1 /2 under an external static magnetic field H� 0
in the z direction, interacting with a heat reservoir which is
composed of many quantum oscillators. We study the sus-
ceptibility of the system for an external driving magnetic
field. We adopt the following Hamiltonians of the quantum
spin system and heat reservoir:

HS = − ��0Sz, HR = �
�

���b�
†b�, �214�
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HSR = − �Sz�R + R†� �R = �
�

g�b�� , �215�

where b� represents the boson operator of the mode � which
composes the heat reservoir, �� is the characteristic fre-
quency of each oscillator, and g� is the coupling constant
between the spin system and the boson of the mode �. Here,
�0 is the Zeeman frequency �0=�H0 with the magnetome-
chanical ratio �. The interaction of the quantum spin system
with the external driving magnetic field is given by

Hed�t� = − �S+�
H

2
ei�t − �S−�

H

2
e−i�t, �216�

where H is the magnitude of the driving magnetic field.
Then, HSR�t� defined by the interaction representation �43�
takes the form

HSR�t� = − �Sz�
�

�g�b�e−i��t + g�
�b�

†ei��t� . �217�

In the study of this spin model, we neglect the effect of
initial correlation between the spin and reservoir for brevity,
and adopt the initial state �TE in the decoupled form

�TE = �0�R, �218�

with �0 given by Eq. �6�.
Applying the relaxation TCL method to the above spin

model, we obtain

tr S+C�2��t�ã−�t� = − ��0,t�tr S+ã−�t� , �219�

where ��0, t� is defined by

��0,t� =
1

2
�

0

t

d	���R�	�,R†�+�R + ��R†�	�,R�+�R� �220a�

=
1

2�
�

�g��2�2n̄� + 1��
0

t

d	�ei��	 + e−i��	� , �220b�

with n̄� defined by

n̄� = 1/	exp������ − 1
 . �221�

Here, we have used the relations SzS+=S+ /2 and S+Sz=
−S+ /2 for spin S=1 /2. In the lowest Born approximation for
the spin-reservoir interaction HSR, we have the TCL equation

d

dt
tr S+ã−�t� = − i�0 tr S+ã−�t� − ��0,t�tr S+ã−�t� , �222�

which leads the admittance

�+−
RTCL��� =

i

�
�

0

�

dt tr �S+ã−�t�ei�̄t

= 2i��Sz�0�
0

�

dt expi��̄ − �0�t − �
0

t

d	 ��0,	�� ,

�223�

with �̄=�+ i� ��→+0�, where �Sz�0 is given by
�Sz�0=tr Sz�0. It should be noted that in the present spin
model, the sum of the higher-order ordered cumulants van-

ishes, as shown in Appendix G. Therefore, the admittance
obtained by using the relaxation TCL method in the lowest
Born approximation for the spin-reservoir interaction, is
equal to the exact one except for the term of initial correla-
tion between the spin and reservoir, i.e.,

�+−��� = �+−
RTCL��� . �224�

Applying the relaxation TC method �or the TCE method�
for the present spin model, we obtain

tr S+C̄�2����ã−��� = − ���̄ − �0�tr S+ã−��� + HOT, �225�

with �̄=�+ i� ��→+0�, where ���� is defined by

���̄� =
1

2
�

0

�

d	„��R�	�,R†�+�R + ��R†�	�,R�+�R…e
i�̄	 �226a�

=
i

2�
�

�g��2�2n̄� + 1� 1

�̄ + ��

+
1

�̄ − ��
� . �226b�

In the lowest Born approximation for the spin-reservoir in-
teraction, we have the admittance

�+−
RTC��� =

i

�
tr �S+ã−��� =

2i��Sz�0

i��0 − �̄� + ���̄ − �0�
, �227�

which takes the form different from Eq. �223�.
Applying the TCLE method to the spin model under con-

sideration, we obtain

tr S+C�2��1��� = − ��0̄�tr S+�1��� , �228�

tr S+D−
�2���� = 2�Sz�0„���̄ − �0� − ��0̄�…/��̄ − �0� ,

�229�

with �̄=�+ i� ��→+0�, where ��0̄� is given by

��0̄� = ��
�

�g��2�2n̄� + 1������ . �230�

Here, ���� is the delta funciton. In the lowest Born approxi-
mation for the spin-reservoir interaction, we have the admit-
tance

�+−
TCLE��� = 2��Sz�0

i + ���̄ − �0�

i��0 − �̄� + ��0̄�
, �231�

which is different from Eq. �223�, where ���̄−�0� comes
from the interference term and is given by

���̄ − �0� = ����̄ − �0� − ��0̄��/��̄ − �0� . �232�

Thus for the quantum spin model �214�–�216�, the admit-
tance �223� obtained by using the relaxation TCL method in
the lowest Born approximation for the spin-reservoir
interaction, is equal to the exact one except for the term of
initial correlation between the spin and reservoir. On the
other hand, in the lowest Born approximation the admittance
�227� obtained by using the relaxation TC method �or the
TCE method� and the admittance �231� obtained by using
the TCLE method have the forms different from the exact
one.
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Let us compare these admittances analytically. The
second-order terms of these admittances in powers of the
spin-reservoir interaction coincide and are equal to

�+−
�2���� = 2i��Sz�0���̄ − �0�/��̄ − �0�2

= − �
�

2��Sz�0�g��2�2n̄� + 1�
��̄ − �0�	��̄ − �0�2 − ��

2

. �233�

The fourth-order terms of those admittances are obtained, by
expanding �223�, �227�, and �231� in powers of �, as

�+−
RTCL�4����

= i��Sz�0�
0

�

dt�
0

t

d	1�
0

t

d	2


��0,	1���0,	2�exp	i��̄ − �0�t


= �
�,��

− ��Sz�0�g��2 · �g���
2�2n̄� + 1��2n̄�� + 1�

��̄ − �0�	��̄ − �0�2 − ��
2
	��̄ − �0�2 − ���

2 




6��̄ − �0�4 − 3��̄ − �0�2���

2 + ���
2 � + ���

2 − ���
2 �2

	��̄ − �0�2 − ��� + ����
2
	��̄ − �0�2 − ��� − ����

2

,

�234�

�+−
RTC�4���� = 2��Sz�0���̄ − �0�2/��̄ − �0�3

= �
�,��

− 2��Sz�0�g��2 · �g���
2�2n̄� + 1��2n̄�� + 1�

��̄ − �0�	��̄ − �0�2 − ��
2
	��̄ − �0�2 − ���

2 

,

�235�

�+−
TCLE�4���� = 2��Sz�0���̄ − �0���0̄�/��̄ − �0�3

= �
�,��

2i���Sz�0�g��2 · �g���
2�2n̄� + 1��2n̄�� + 1�

��̄ − �0�2	��̄ − �0�2 − ��
2



 ������ , �236�

with �̄=�+ i� ��→+0�. These fourth-order terms of admit-
tances take the forms different from each other. They do not
coincide even in the limit �→�0. For this quantum spin
model, the relaxation TC method �or the TCE method� and
the TCLE method in the lowest Born approximation for the
spin-reservoir interaction give the forms of admittance dif-
ferent from the exact one in the higher-order terms.

For the quantum oscillator model �192�–�194�, the relax-
ation TC method �or the TCE method� in the lowest Born
approximation for the boson-reservoir interaction gives the
exact admittance, and in that approximation the relaxation
TCL method and the TCLE method give the forms of admit-
tance different from the exact one in the higher-order terms.
On the other hand, for the quantum spin model �214�–�216�,
the relaxation TCL method in the lowest Born approximation
for the spin-reservoir interaction gives the exact admittance
except for the term of initial correlation between the spin and
reservoir, and in that approximation the relaxation TC
method �or the TCE method� and the TCLE method give the
forms of admittance different from the exact one in the

higher-order terms. This means that accuracy of the admit-
tances obtained by using the relaxation TC method �or the
TCE method�, the relaxation TCL method and the TCLE
method in the lowest Born approximation for the system-
reservoir interaction, depends on the model of physical sys-
tem under consideration.

VII. SUMMARY AND CONCLUDING REMARKS

We have derived the exact expressions �38�, �56�, �72�,
and �91� of the complex admittance for quantum system in
contact with heat reservoir using the relaxation method and
the external-field method, respectively, for the two types of
equation of motion, which are the time-convolution �TC�
equation and time-convolutionless �TCL� equation. We have
shown that the expression of the complex admittance ob-
tained using the relaxation method with the TC equation �the
relaxation TC method�, coincides exactly with that obtained
using the external-field method with the TC equation �the
TCE method�, i.e., Eq. �99�. We have also shown that the
three expressions of the complex admittance coincide with
each other in the lowest Born approximation for the system-
reservoir interaction, i.e., Eq. �127�, though the three expres-
sions of the exact admittances are different from each other.
We have besides given the expressions of the admittance in
the nth order approximation for the system-reservoir interac-
tion, and have expressed the admittance in the fourth-order
approximation using time-integrals alone by transforming
inverse-temperature integrals into time integrals. Further-
more, we have compared the admittances for the two exactly
solvable models analytically and have found that for the
quantum oscillator model �192�–�194�, the relaxation TC
method �or the TCE method� in the lowest Born approxima-
tion for the boson-reservoir interaction gives the exact admit-
tance, that for the quantum spin model �214�–�216�, the re-
laxation TCL method in the lowest Born approximation for
the spin-reservoir interaction gives the exact admittance ex-
cept for the term of initial correlation between the spin and
reservoir, and thus that accuracy of the admittances depends
on the model of physical system under consideration.

We here compare the admittances �44� �or �77��, �60� and
�97�, which are, respectively, obtained using the relaxation
TC method �or the TCE method�, the relaxation TCL method
and the TCLE method in the lowest Born approximation for
the system-reservoir interaction, with the results in the con-
ventional Markovian approximation �27,29–32� or in the van
Hove limit �51�. In the conventional Markovian approxima-
tion, the motion of the system is determined in the van Hove
limit �51� or in the narrowing limit �27,29� in which the heat
reservoir is damped very rapidly, i.e., the reservoir correla-
tion time 	c→0. In this limit, the second-order TC equation
�40� and the second-order TCL equation �57� become
�27,29,30,41,43�

�d/dt�ã�t� = − iLSã�t� + C�2�ã�t� , �237�

where C�2� is given by Eq. �94�. Substituting the formal so-
lution of the above equation,
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ã�t� = exp	− iLSt + C�2�t
ã�0� �238�

into the Kubo formula �16�, the admittance takes the form
�41–43�

�ij
v ��� = �i/��tr Ai	i�LS − �� − C�2�
−1�Aj,�S + �0

�2�� , �239�

which is valid only in the van Hove limit �51� or in the
narrowing limit �27,29–32�, where �0

�2� is given by Eqs. �45�
or �189�. Comparing the above admittance �239� with the
admittance �97� obtained using the TCLE method in the low-
est Born approximation for the system-reservoir interaction,
the latter admittance includes the interference term Dj

�2����
which is not included in the former admittance and repre-
sents the effects of the initial correlation and memory for the
system and reservoir. The effects of the initial correlation and
memory are the effects of the deviation from the van Hove
limit �51� or the narrowing limit, because the effects of initial
correlation can be neglected in that limit as shown in Ref.
�42� and the memory effects are the effects of collision of the
system with the heat reservoir. These effects are neglected in
the conventional Markovian approximation �27,29–32�. As
examined in Sec. IV, the admittance obtained using the re-
laxation TC method �or the TCE method�, the admittance
obtained using the relaxation TCL method and the admit-
tance obtained using the TCLE method, coincide with each
other in the lowest Born approximation for the system-
reservoir interaction. Therefore, the admittances �44� �or
�77��, �60� and �97� include the effects of the initial correla-
tion and memory for the system and reservoir.

The relaxation method, in which the Kubo formula is cal-
culated for systems with no external driving fields, is essen-
tially equal with the external-field method in which the ad-
mittance is directly calculated from equations of motion with
external driving terms. Because, when the TC equation of
motion is used to calculate the admittance, the expression of
the complex admittance obtained using the relaxation TC
method, coincides exactly with that obtained using the TCE
method �the external-field method with the TC equation�.
When the TCL equation of motion is used to calculate the
admittance, the two expressions of the complex admittance
obtained using the relaxation TCL method and TCLE method
�the external-field method with the TCL equation� are differ-
ent to each other, and also they are different from the expres-
sion of the admittance obtained using the relaxation TC
method �or the TCE method�. The difference of the expres-
sions occurs by renormalizing the memory terms in the pro-
cess of derivation of the TCL equations.

In Sec. IV, we have examined analytically the relations
among the admittances �44� �or �77��, �60� and �97�, which
are obtained using the relaxation TC method �or the TCE
method�, the relaxation TCL method and the TCLE method,
respectively, in the lowest Born approximation for the
system-reservoir interaction. The fact that the three expres-
sions �44� �or �77��, �60� and �97� of the complex admittance
coincide with each other in the lowest Born approximation
for the system-reservoir interaction, means that the three ex-
pressions of the admittance are, respectively, valid in that
approximation. The differences among the three expressions
come from the fact that the high-order terms differ from each

other. These three expressions include the high-order terms
that are dominant in the resonance region. Even if the ex-
pression of the complex admittance obtained in the lowest
Born approximation for the system-reservoir interaction in-
cludes many more high-order terms, it is not always the more
exact expression. Because, that expression of the complex
admittance does not include part of the third-order, fourth-
order, and high-order terms in powers of the system-reservoir
interaction. It is also possible to derive the admittance �60�
obtained using the relaxation TCL method from the admit-
tance �97� obtained using the TCLE method by proceeding in
the same way as in Sec. IV. Moreover, it should be noticed
that as mentioned in Sec. III, the admittance �44� obtained
using the relaxation TC method by the lowest Born approxi-
mation of Eq. �28� including no external driving terms, co-
incides with the admittance �77� obtained using the TCE
method by the lowest Born approximation of Eqs. �63� or
�68� including external driving terms. Thus in the relaxation
TC method and TCE method, although the equations in
which the perturbation is truncated are different from each
other, the expressions of the obtained admittances coincides
with each other.

The three expressions �44� �or �77��, �60� and �97� of the
complex admittance are, respectively, valid in the lowest
Born approximation for the system-reservoir interaction as
mentioned in the above paragraph, but the usability is differ-
ent from each other. The expression �60�, which is obtained
using the relaxation TCL method, takes the form that is not
easy to use, because it is difficult in general to calculate the
time integral of the ordered exponential for many-body sys-
tems or for complicated systems. The expression �97�, which
is obtained using the TCLE method, has been formulated in
terms of thermofield dynamics �TFD� using the method of
nonequilibrium thermofield dynamics proposed by Arimitsu
and Umezawa �52� in order to study the linear response of
many-body systems interacting with heat reservoir
�43,44,47�. It has been applied to an weakly interacting bo-
son system �53� and to a ferromagnetic system interacting
with a phonon reservoir in the spin-wave approximation
�54�, by using the generalized thermofield dynamics
�43,44,47�. Recently, fluctuation-dissipation theorem for the
TCLE method has been examined in the lowest Born ap-
proximation for the system-reservoir interaction �47,53�. The
TCLE method is a method for improving the difficulty of the
relaxation TCL method. The expression �44� �or �77��, which
is obtained using the relaxation TC method �or the TCE
method�, can be applied to a interacting spin system by mak-
ing a unfied numerical method �37�. In practical applications,
the relaxation TC method, the TCE method and the TCLE
method may be the useful methods to study the linear re-
sponse of many-body systems interacting with heat reservoir.

We have derived the formulas necessary for the higher-
order expansions in powers of the system-reservoir interac-
tion in Sec. V. When we proceed to the high order in powers
of the system-reservoir interaction, the formulas derived in
Sec. V will be useful. We have there given the expressions of
the admittance in the nth order approximation, and have also
given the forms of the admittances in the fourth-order ap-
proximation in the expression using time-integrals alone by
transforming inverse-temperature integrals into time inte-
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grals. This facilitates the calculations of the admittances, be-
cause when the time-correlation functions of the heat reser-
voir are given, the admittances can be calculated.

As examined in Sec. VI for the two exactly solvable mod-
els analytically, the relaxation TC method �or the TCE
method� in the lowest Born approximation in powers of the
system-reservoir interaction gives the exact admittance for
the quantum oscillator model �192�–�194�, and the relaxation
TCL method in the lowest Born approximation in powers of
the system-reservoir interaction gives the exact admittance
for the quantum spin model �214�–�216� except for the term
of initial correlation between the spin and reservoir. This
means that accuracy of the admittances obtained using the
relaxation TC method �or the TCE method�, the relaxation
TCL method and the TCLE method in the lowest Born ap-
proximation for the system-reservoir interaction, depends on
the model of physical system under consideration. For the
case of a nonadiabatic interaction as Eq. �193�, in which the
Hamiltonian HS of the quantum system is noncommutable to
the system-reservoir interaction HSR, the relaxation TC
method �or the TCE method� may give a better result. For the
case of an adiabatic interaction as Eq. �215�, in which the

Hamiltonian HS of the quantum system is commutable to the
system-reservoir interaction HSR, the relaxation TCL method
may give a better result. Accuracy of the three admittances is
an interesting subject of future study.
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APPENDIX A: TRANSFORMATION OF THE
��-INTEGRAL INTO A TIME INTEGRAL

We show that the expression �74� for the interference term

D̄�2���� in the TC equation, which is equal to the first term of
the interference term D�2���� given by Eq. �95�, coincides
with the expression �75�. The inverse-temperature integral
��� integral� in the expression �74� can be integrated and can
be rewritten as follows:

�
0

�

d�� exp�− iL0	�Led����S�RHSR�− i����ei�	 = �
0

�

d�� exp�− iL0	�Led����S�R exp����L0�HSRei�	 �A1�

=exp�− iL0	�Led����S�R
exp���L0� − 1

�L0
HSRei�	

= exp�− iL0	�Led���
1

L0
LSR�S�Rei�	, �A2�

which can be expressed using a time integrals as

�
0

�

d��e−iL0	Led����S�RHSR�− i����ei�	 = lim
�→+0

i�
	

�

ds e−iL0	Led���eiL0�	−s�LSR�S�Rei�	−�s. �A3�

Using the integral transformation

�
0

�

d	�
	

�

ds = �
0

�

ds�
0

s

d	 = �
0

�

d	�
0

	

ds �	 ⇔ s� , �A4�

the expression �74� for D̄�2���� coincides with the expression �75�. Similarly, the expression �47� for D̄j
�2����, which is equal

to the first term of Dj
�2���� given by Eq. �98�, can be shown to coincide with the expression �78�.

APPENDIX B: DERIVATION OF THE INTERFERENCE TERM D[�]

The interference term D�t� given by Eq. �83�, in the limit t→�, becomes

D�t� = �
0

t

d	 trR LSR
1

1 − �t�
e−iQLQ		− Led�t − 	�Q�TE + �t − 	�Led�t − 	��TE
�t→� �B1�
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=− �
0

t

d	�
�

trR LSR
1

1 − �t�
e−iQLQ	Led���Q�TEe−i��t−	��t→�

− i�
0

t

d	�
	

t

ds�
�

trR LSR
1

1 − �t�
e−iQLQ	e−iQLQ�s−	�QLSRPeiL�s−	�Led����TEe−i��t−	��t→�, �B2�

where we have substituted Eq. �8� and �t−	�, which is given by

�t − 	� = − i�
	

t

ds exp	− iQLQ�s − 	�
QLSRP exp	iL�s − 	�
 . �B3�

Then, the interference term D��� takes, according to the definition �87�, the form

D��� = − �
0

�

d	 trR LSR
1

1 − 
exp�− iQLQ	�Led���Q�TE exp�i�	�

− i�
0

�

d	�
	

�

ds trR LSR
1

1 − 
exp�− iQLQs�QLSRP exp	iL�s − 	�
Led����TE exp�i�	� , �B4�

which becomes equal the expression �88� by the integral transformation �A4�, where  is given by Eq. �89�.

APPENDIX C: TRANSFORMATION OF THE �1 AND �2 INTEGRALS INTO TWO TIME INTEGRALS

The �1 and �2 integrals in Sec. V C can be integrated and can be rewritten as follows:

�
0

�

d�1�
0

�1

d�2e−iL0	�A,�S�RHSR�− i��1�HSR�− i��2�� �C1�

=�
0

�

d�1�
0

�1

d�2e−iL0	�A,�S�R�e�1�L0HSR��e�2�L0HSR�� �C2�

=�
0

�

d�1e−iL0	�A,�S�Re�1�L0HSR
1

�L0
HSR − �e�1�L0HSR�

1

�L0
HSR�� �C3�

=e−iL0	�A,�S�R
e��L0 − 1

�L0
HSR

1

�L0
HSR − �S�R� e��L0 − 1

�L0
HSR� 1

�L0
HSR� �C4�

=e−iL0	�A,
1

�L0
�HSR

1

�L0
HSR,�S�R� − � 1

�L0
�HSR,�S�R�� 1

�L0
HSR� , �C5�

which can be expressed using the two time integrals as

�
0

�

d�1�
0

�1

d�2e−iL0	�A,�S�RHSR�− i��1�HSR�− i��2��

=
i2

�2�
	

�

d	1�
	1

�

d	2 e−iL0	
†A,e−iL0�	1−	��HSRe−iL0�	2−	1�HSR,�S�R�‡

− �
	

�

d	1�
	

�

d	2 e−iL0	
†A,�e−iL0�	1−	��HSR,�S�R��e−iL0�	2−	�HSR‡�exp�− �	1 − �	2���→+0 �C6�

=
i2

�2�
	

�

d	1�
	1

�

d	2†A�− 	�,�HSR�− 	1�HSR�− 	2�,�S�R�‡

− �
	

�

d	1�
	

�

d	2†A�− 	�,�HSR�− 	1�,�S�R�HSR�− 	2�‡�exp�− �	1 − �	2���→+0 �C7�
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=
i2

�2�
	

�

d	1�
	

	1

d	2†A�− 	�,HSR�− 	2��HSR�− 	1�,�S�R� − �HSR�− 	1�,�S�R�HSR�− 	2�‡exp�− �	1���→+0

=
i2

�2�
	

�

d	1�
	

	1

d	2�A�− 	�,†HSR�− 	2�,�HSR�− 	1�,�S�R�‡�exp�− �	1���→+0 �C8�

=i2�
	

�

d	1�
	

	1

d	2�A�− 	�,LSR�− 	2�LSR�− 	1��S�R�exp�− �	1���→+0. �C9�

APPENDIX D: TRANSFORMATION OF THE �1, �2 AND �3 INTEGRALS INTO THREE TIME-INTEGRALS

The �1, �2 and �3 integrals in Sec. V C can be integrated and can be rewritten as follows:

�
0

�

d�1�
0

�1

d�2�
0

�2

d�3e−iL0	�A,�S�RHSR�− i��1�HSR�− i��2�HSR�− i��3�� �D1�

=�
0

�

d�1e−iL0	�A,�S�R�e�1�L0HSR� e�1�L0 − 1

�L0
HSR

1

�L0
HSR − � e�1�L0 − 1

�L0
HSR� 1

�L0
HSR�� �D2�

=
1

�3e−iL0	�A,�S�R 1

L0
�e��L0 − 1�HSR

1

L0
HSR

1

L0
HSR − � 1

L0
�e��L0 − 1�HSR� 1

L0
HSR

1

L0
HSR

− � 1

L0
�e��L0 − 1�HSR

1

L0
HSR� 1

L0
HSR + � 1

L0
�e��L0 − 1�HSR�� 1

L0
HSR� 1

L0
HSR�� �D3�

=
1

�3e−iL0	�A,
1

L0
�HSR

1

L0
HSR

1

L0
HSR,�S�R� − � 1

L0
�HSR,�S�R�� 1

L0
HSR

1

L0
HSR

− � 1

L0
�HSR

1

L0
HSR,�S�R�� 1

L0
HSR + � 1

L0
�HSR,�S�R��� 1

L0
HSR� 1

L0
HSR� , �D4�

which can be expressed using the three time integrals, by performing some integral transformations as Eqs. �A4�, �138�, and
�142�, as

�
0

�

d�1�
0

�1

d�2�
0

�2

d�3e−iL0	�A,�S�RHSR�− i��1�HSR�− i��2�HSR�− i��3��

=
i3

�3�
	

�

d	1�
	1

�

d	2�
	2

�

d	3e−iL0	
†A,e−iL0�	1−	��HSRe−iL0�	2−	1�HSRe−iL0�	3−	2�HSR,�S�R�‡

− �
	

�

d	1�
	

�

d	2�
	2

�

d	3e−iL0	
†A,�e−iL0�	1−	��HSR,�S�R��e−iL0�	2−	�HSRe−iL0�	3−	2�HSR‡

− �
	

�

d	1�
	1

�

d	2�
	

�

d	3e−iL0	
†A,�e−iL0�	1−	��HSRe−iL0�	2−	1�HSR,�S�R��e−iL0�	3−	�HSR‡

+ �
	

�

d	1�
	

�

d	2�
	

�

d	3e−iL0	
†A,�e−iL0�	1−	��HSR,�S�R���e−iL0�	2−	�HSR�e−iL0�	3−	�HSR‡�exp�− �	1 − �	2 − �	3���→+0

�D5�
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=
i3

�3�
	

�

d	1�
	1

�

d	2�
	2

�

d	3†A�− 	�,�HSR�− 	1�HSR�− 	2�HSR�− 	3�,�S�R�‡

− �
	

�

d	1�
	

�

d	2�
	2

�

d	3†A�− 	�,�HSR�− 	1�,�S�R�HSR�− 	2�HSR�− 	3�‡

− �
	

�

d	1�
	1

�

d	2�
	

�

d	3†A�− 	�,�HSR�− 	1�HSR�− 	2�,�S�R�HSR�− 	3�‡

+ �
	

�

d	1�
	

�

d	2�
	

�

d	3†A�− 	�,�HSR�− 	1�,�S�R�HSR�− 	2�HSR�− 	3�‡�e−�	1−�	2−�	3��→+0 �D6�

=
i3

�3�
	

�

d	1�
	

	1

d	2�
	

	2

d	3†A�− 	�,�HSR�− 	3�,†HSR�− 	2�,�HSR�− 	1�,�S�R�‡�‡exp�− �	1���→+0 �D7�

=i3�
	

�

d	1�
	

	1

d	2�
	

	2

d	3�A�− 	�,LSR�− 	3�LSR�− 	2�LSR�− 	1��S�R�exp�− �	1���→+0. �D8�

APPENDIX E: TRANSFORMATION OF THE �1, �2, �3, AND �4 INTEGRALS INTO FOUR TIME INTEGRALS

The �1, �2, �3, and �4 integrals in the expression �159� of �TE
�4� can be integrated and can be expressed using the four

time-integrals by proceeding in the same way as in Appendixes C and D as follows:

�
0

�

d�1�
0

�1

d�2�
0

�2

d�3�
0

�3

d�4�S�RHSR�− i��1�HSR�− i��2�HSR�− i��3�HSR�− i��4� �E1�

=
1

�3�
0

�

d�1�S�R�e�1�L0HSR� 1

L0
�e�1�L0 − 1�HSR

1

L0
HSR

1

L0
HSR − � 1

L0
�e�1�L0 − 1�HSR� 1

L0
HSR

1

L0
HSR

− � 1

L0
�e�1�L0 − 1�HSR

1

L0
HSR� 1

L0
HSR + � 1

L0
�e�1�L0 − 1�HSR�� 1

L0
HSR� 1

L0
HSR� �E2�

=
1

�4�S�R 1

L0
�e��L0 − 1�HSR

1

L0
HSR

1

L0
HSR

1

L0
HSR − � 1

L0
�e��L0 − 1�HSR� 1

L0
HSR

1

L0
HSR

1

L0
HSR

− � 1

L0
�e��L0 − 1�HSR

1

L0
HSR� 1

L0
HSR

1

L0
HSR + � 1

L0
�e��L0 − 1�HSR�� 1

L0
HSR� 1

L0
HSR

1

L0
HSR

− � 1

L0
�e��L0 − 1�HSR

1

L0
HSR

1

L0
HSR� 1

L0
HSR + � 1

L0
�e��L0 − 1�HSR�� 1

L0
HSR

1

L0
HSR� 1

L0
HSR

+ � 1

L0
�e��L0 − 1�HSR

1

L0
HSR�� 1

L0
HSR� 1

L0
HSR − � 1

L0
�e��L0 − 1�HSR�� 1

L0
HSR�� 1

L0
HSR� 1

L0
HSR� �E3�

=
i4

�4�
0

�

d	1�
	1

�

d	2�
	2

�

d	3�
	3

�

d	4�HSR�− 	1�HSR�− 	2�HSR�− 	3�HSR�− 	4�,�S�R�

− �
0

�

d	1�
0

�

d	2�
	2

�

d	3�
	3

�

d	4�HSR�− 	1�,�S�R�HSR�− 	2�HSR�− 	3�HSR�− 	4�

− �
0

�

d	1�
	1

�

d	2�
0

�

d	3�
	3

�

d	4�HSR�− 	1�HSR�− 	2�,�S�R�HSR�− 	3�HSR�− 	4�

+ �
0

�

d	1�
0

�

d	2�
0

�

d	3�
	3

�

d	4�HSR�− 	1�,�S�R�HSR�− 	2�HSR�− 	3�HSR�− 	4�
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− �
0

�

d	1�
	1

�

d	2�
	2

�

d	3�
0

�

d	4�HSR�− 	1�HSR�− 	2�HSR�− 	3�,�S�R�HSR�− 	4�

+ �
0

�

d	1�
0

�

d	2�
	2

�

d	3�
0

�

d	4�HSR�− 	1�,�S�R�HSR�− 	2�HSR�− 	3�HSR�− 	4�

+ �
0

�

d	1�
	1

�

d	2�
0

�

d	3�
0

�

d	4�HSR�− 	1�HSR�− 	2�,�S�R�HSR�− 	3�HSR�− 	4�

− �
0

�

d	1�
0

�

d	2�
0

�

d	3�
0

�

d	4�HSR�− 	1�,�S�R�HSR�− 	2�HSR�− 	3�HSR�− 	4��e−�	1−�	2−�	3−�	4��→+0 �E4�

=
i4

�4�
0

�

d	1�
	1

�

d	2�
	2

�

d	3�
	3

�

d	4�HSR�− 	1�HSR�− 	2�HSR�− 	3�HSR�− 	4�,�S�R�

− �
0

�

d	1�
	1

�

d	2�
	2

�

d	3�
0

�

d	4�HSR�− 	1�HSR�− 	2�HSR�− 	3�,�S�R�HSR�− 	4�

+ �
0

�

d	1�
	1

�

d	2�
0

�

d	3�
0

	3

d	4�HSR�− 	1�HSR�− 	2�,�S�R�HSR�− 	3�HSR�− 	4�

− �
0

�

d	1�
0

�

d	2�
0

	2

d	3�
0

	3

d	4�HSR�− 	1�,�S�R�HSR�− 	2�HSR�− 	3�HSR�− 	4��

exp	− �	1 − �	2 − �	3 − �	4
��→+0, �E5�

which can be expressed, by performing some integral transformations as Eqs. �A4�, �138�, and �142�, in the following compact
form:

�
0

�

d�1�
0

�1

d�2�
0

�2

d�3�
0

�3

d�4�S�RHSR�− i��1�HSR�− i��2�HSR�− i��3�HSR�− i��4�

=
i4

�4�
0

�

d	1�
0

	1

d	2�
0

	2

d	3�
0

	3

d	4†HSR�− 	4�,�HSR�− 	3�,†HSR�− 	2�,�HSR�− 	1�,�S�R�‡�‡e−�	1��→+0 �E6�

=i4�
0

�

d	1�
0

	1

d	2�
0

	2

d	3�
0

	3

d	4 LSR�− 	4�LSR�− 	3�LSR�− 	2�LSR�− 	1��S�R exp�− �	1���→+0. �E7�

APPENDIX F: CALCULATION OF ADMITTANCE �bb†(�) [EQ. (196)]

The admittance �bb†��� given by Eq. �196� can be rewritten as

�bb†��� = i��
0

�

dt Tr b�t�1 + �
n=1

�

�− i�n�
0

t

d	1�
0

	1

d	2¯�
0

	n−1

d	nLSR�	1�LSR�	2� ¯ LSR�	n���b†,�TE�exp�i�t − �t���→+0

�F1�

=i��
0

�

dt Tr b + �
n=1

�

�− i�n�
0

�

d	n�
	n

�

d	n−1 ¯ �
	2

�

d	1�
	1

�

dt Tr�¯†�b,HSR�	1��,HSR�	2�‡, . . . ,HSR�	n��/�n�

�b†,�TE�exp�i�� − �0�t − �t���→+0, �F2�

which can be calculated using Eq. �195� as

�bb†��� =
�

�0 − �̄
+

�

�0 − �̄
�
m=1

�

�− i�2m�
0

�

d	2m�
	2m

�

d	2m−1¯�
	3

�

d	2�
	2

�

d	1�
�1

¯ �
�m

�g�1
�2 ¯ �g�m

�2


Tr b�b†,�TE�exp	i��̄ − �0�	1 + i��0 − ��1
�	1 − i��0 − ��1

�	2 + ¯ + i��0 − ��m
�	2m−1 − i��0 − ��m

�	2m
 �F3�
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=
�

�0 − �̄
1 + �

m=1

�

�
�1

¯�
�m

�− 1�m�g�1
�2 ¯ �g�m

�2

��0 − �̄�m��̄ − ��1
� ¯ ��̄ − ��m

�� �F4�

=
�

�0 − �̄1 + �
�

�g��2

��0 − �̄���̄ − ����−1

=
i�

i��0 − �̄� + ���̄�
, �F5�

with �̄=�+ i� ��→+0�, where ���̄� is given by Eq. �198�. Thus, the exact form �197� of �bb†��� can be obtained.

APPENDIX G: THE ORDERED CUMULANTS FOR THE SPIN MODEL (214)–(216)

We calculate the ordered cumulants for the quantum spin model �214�–�216�. For the second-order ordered cumulant
�LSRLSR�−	��R �	�0�, we can obtain, by using the relations SzS+=S+ /2 and S+Sz=−S+ /2,

tr S+�LSRLSR�− 	��Rã−�t� = �1/2�	��R�	�,R†�+�R + ��R†�	�,R�+�R
tr S+ã−�t� . �G1�

We can calculate the fourth-order ordered cumulant �LSRLSR�−	3�LSR�−	2�LSR�−	1��R �	1�	2�	3�0� as follows:

tr S+�LSRLSR�− 	3�LSR�− 	2�LSR�− 	1��Rã−�t�

= − tr�S+,Sz���R + R†�LSR�− 	3�LSR�− 	2�LSR�− 	1��Rã−�t�

= − Tr	S+Sz�R + R†�„R�− 	3� + R†�− 	3�… − SzS+„R�− 	3� + R†�− 	3�…�R + R†�
LSR�− 	2�LSR�− 	1��Rã−�t�

= �1/2�Tr S+�R + R†,R�− 	3� + R†�− 	3��+LSR�− 	2�LSR�− 	1��Rã−�t�,

= �1/22�Tr S+†�R + R†,R�− 	3� + R†�− 	3��+R�− 	2� + R†�− 	2�‡+LSR�− 	1��Rã−�t�,

= �1/23���†�R + R†,R�− 	3� + R†�− 	3��+,R�− 	2� + R†�− 	2�‡+,R�− 	1� + R†�− 	1��+�Rtr S+ã−�t� , �G2�

which can be rewritten using the second-order ordered cumulants by the Wick’s theorem for finite temperature, as

tr S+�LSRLSR�− 	3�LSR�− 	2�LSR�− 	1��Rã−�t�

= �1/22�	��R + R†,R�− 	3� + R†�− 	3��+�R��R�− 	2� + R†�− 	2�,R�− 	1� + R†�− 	1��+�R

+ ��R + R†,R�− 	2� + R†�− 	2��+�R��R�− 	3� + R†�− 	3�,R�− 	1� + R†�− 	1��+�R

+ ��R + R†,R�− 	1� + R†�− 	1��+�R��R�− 	3� + R†�− 	3�,R�− 	2� + R†�− 	2��+�R
tr S+ã−�t� . �G3�

We can also calculate the product of the second-order ordered cumulants as

tr S+�LSRLSR�− 	3��R�LSR�− 	2�LSR�− 	1��Rã−�t�

= �1/2���R + R†,R�− 	3� + R†�− 	3��+�Rtr S+�LSR�− 	2�LSR�− 	1��Rã−�t�

= �1/22���R + R†,R�− 	3� + R†�− 	3��+�R��R�− 	2� + R†�− 	2�,R�− 	1� + R†�− 	1��+�Rtr S+ã−�t� , �G4�

tr S+�LSRLSR�− 	2��R�LSR�− 	3�LSR�− 	1��Rã−�t�

= �1/22���R + R†,R�− 	2� + R†�− 	2��+�R��R�− 	3� + R†�− 	3�,R�− 	1� + R†�− 	1��+�Rtr S+ã−�t� , �G5�

tr S+�LSRLSR�− 	1��R�LSR�− 	3�LSR�− 	2��Rã−�t�

= �1/22���R + R†,R�− 	1� + R†�− 	1��+�R��R�− 	3� + R†�− 	3�,R�− 	2� + R†�− 	2��+�Rtr S+ã−�t� . �G6�

Therefore, the sum of the fourth-order ordered cumulants vanishes, i.e.,

tr S+	�LSRLSR�− 	3�LSR�− 	2�LSR�− 	1��R − �LSRLSR�− 	3��R�LSR�− 	2�LSR�− 	1��R − �LSRLSR�− 	2��R�LSR�− 	3�LSR�− 	1��R

− �LSRLSR�− 	1��R�LSR�− 	3�LSR�− 	2��R
ã−�t� = 0. �G7�

In the same way, it can be shown that the sum of the higher-order ordered cumulants vanishes.
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